Rectifying Inspection and Quality Cost

Paul Mathews, Mathews Malnar and Bailey, Inc. Copyright © 2007-2016, Mathews Malnar and Bailey, Inc.

Acceptance Sampling

• Acceptance sampling uses sampling inspection to determine whether to accept or reject lots.

- If the quality of the sample is good then we accept the lot.
- If the quality of the sample is bad then we reject the lot.
- Rejected lots may be:
 - scrapped
 - sent back to the supplier
 - 100% inspected (*rectifying inspection*).

1

Sampling Plan Design

Sampling plan design is based on statistical hypothesis testing methods: H_0 : the lot is good versus H_A : the lot is bad. Sample data are used to determine which hypothesis to accept.

• Sampling plan parameters (the sample size and acceptance criterion) are chosen to manage risks or error rates. There are two:

- Type 1 error, false alarm, manufacturer's risk rejecting a good lot indicated with the symbol α
- Type 2 error, missed alarm, consumer's risk accepting a bad lot - indicated with the symbol β

3

Sampling Plan Design

Sampling can be done using attribute or variable data:

- Example (attributes plan): A sampling plan for defectives uses a sample size of n = 40 and has an acceptance number of c = 1 (i.e. accept the lot if there are zero or one defectives in the sample, reject the lot if there are two or more defectives in the sample).
- Example (variables plan, single-sided spec): A sampling plan for a variable/measurement response uses as sample size of n = 12 and has acceptance criterion k = 2.2 (i.e. accept the lot if $(USL \bar{x})/s > k$ or $(\bar{x} LSL)/s > k$).

Attribute Sampling Plan Design

• For an attribute sampling plan for defectives the probability of accepting (P_A) lots with fraction defective p is given by the cumulative binomial probability

$$P_A = \sum_{x=0}^{c} b(x;n,p)$$
$$= b(c;n,p)$$

- Attribute sampling plans for defectives are designed by choosing two (p, P_A) pairs:
 - The low fraction defective, called the *acceptable quality level* or p = AQL, that the process can tolerate and the corresponding high probability of accepting lots of AQL quality $P_A = (1 \alpha)$.
 - The high fraction defective, called the *rejectable quality level* or p = RQL, that the process cannot tolerate and the corresponding low probability of rejecting lots of RQL quality $P_A = \beta$.

5

Attribute Sampling Plan Design

- Putting this information together gives two equations:
 - For $(p = AQL, P_A = 1 \alpha)$:

$$1 - \alpha = b(c; n, p = AQL)$$

• For
$$(p = RQL, P_A = \beta)$$
:

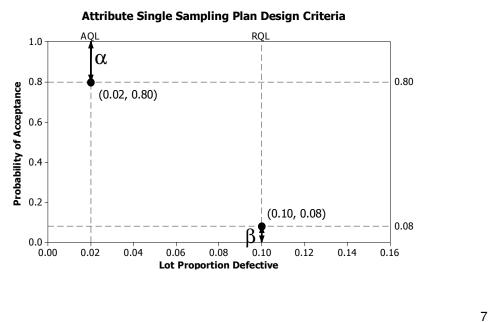
$$\beta = b(c; n, p = RQL)$$

- The simultaneous solution to the two equations gives values for the two unknowns the sampling plan's sample size *n* and the acceptance number *c*.
- Solving these equations is done graphically using Larson's nomogram (an archaic method but still in use) or special software, e.g. MINITAB Stat> Quality Tools> Acceptance Sampling by Attributes> Create a Sampling Plan.

Attribute Sampling Plan Design

Example: Determine the sampling plan parameters n and c for the attribute sampling plan that must accept 80% of lots with 2% defectives and accept 8% of lots with 10% defectives.

Solution:



Attribute Sampling Plan Design

Using MINITAB:

Acceptable Quality Le Producer's Risk (alph	
Rejectable Quality Le Consumer's Risk (beta	· -
Generated Plan(s) Sample Size 41 Acceptance Number 1	-
Proportion Probabili Defective Accepti 0.02 0.8 0.10 0.0	Ing Rejecting 302 0.198

Operating Characteristic Curve

The *operating characteristic* (OC) curve of a sampling plan with specified n and c is the plot of P_A versus p where

$$P_A = b(c; n, p)$$

- OC curves are useful to
 - Study the performance of the sampling plan
 - Compare the performanc of two or more sampling plans

9

Operating Characteristic Curve

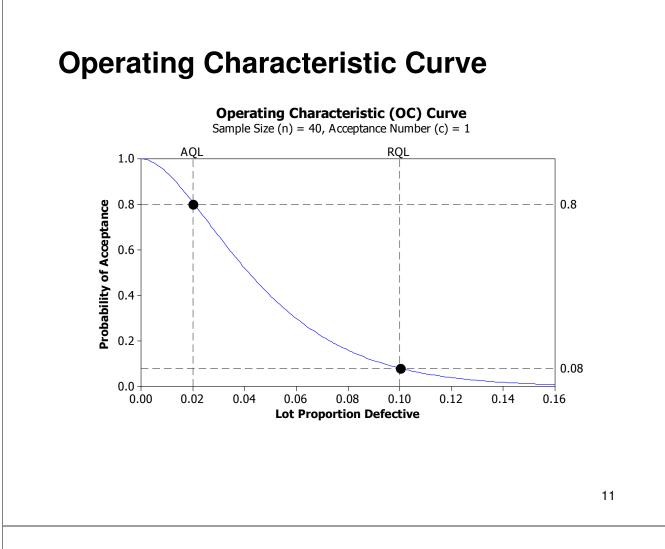
Example: Determine the operating characteristic (OC) curve for the n = 40, c = 1 attribute sampling plan.

Solution: For the n = 40, c = 1 sampling plan

$$P_A = b(c = 1; n = 40, p).$$

Some values of P_A as a function of p are

p	0.000	0.01	0.02	0.04	0.08	0.10
P_A	1.000	0.939	0.802	0.521	0.159	0.074



Average Total Inspection

- The number of units to be inspected will be either:
 - n if the lot is accepted
 - N if the lot is rejected
- For a series of lots, the average number of units inspected will depend on the fraction defective and will generally fall between *n* and *N*. This average, called the *average total inspection (ATI)* or *average sample number (ASN)*, is given by

$$ATI = nP_A + N(1 - P_A)$$

ATI is useful for managing the inspection process.

Average Total Inspection

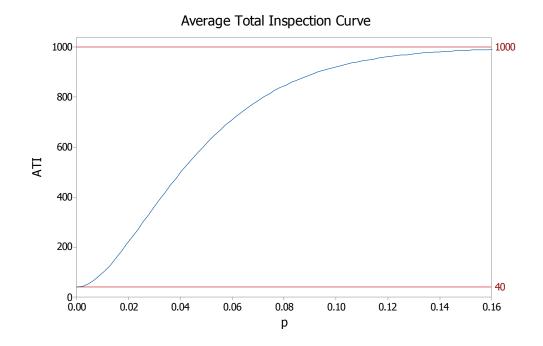
Example: Plot *ATI* versus the fraction defective for the n = 40, c = 1 plan using a lot size of N = 1000.

Solution: From the equation for *ATI*, some values of *ATI* versus *p* are:

p	0.000	0.01	0.02	0.04	0.08	0.16
P_A	1.000	0.939	0.810	0.521	0.159	0.008
ATI	40	98	222	500	847	992

13

Average Total Inspection



Copyright © 2007-2016, Mathews Malnar and Bailey, Inc.

Average Outgoing Quality

- p is the fraction defective of the material coming into the inspection operation.
- The post-inspection fraction defective or *average outgoing quality* (*AOQ*) is given by

$$AOQ = pP_A\left(\frac{N-n}{N}\right)$$

- When p is small, near 0, the sampling plan will accept most lots and then $AOQ \simeq p$.
- When p is large, so that the sampling plan rejects most lots, then those lots will be 100% inspected and $AOQ \simeq 0$.

• AOQ reaches a maximum value when p is moderate. The maximum AOQ is called the *average outgoing quality limit (AOQL)*. Some sampling standards, e.g. Dodge-Romig, are indexed by AOQL values.

15

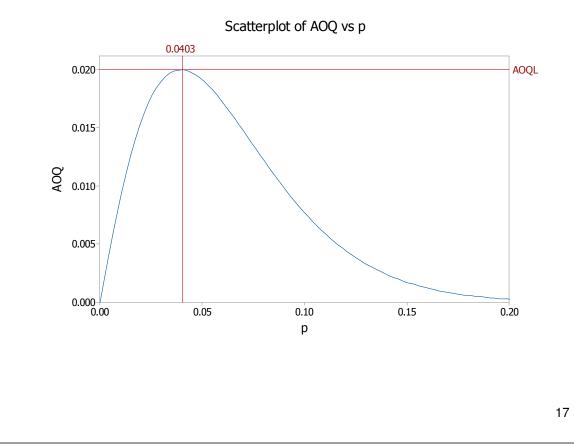
Average Outgoing Quality

Example: Plot the AOQ curve for the n = 40, c = 1 plan using a lot size of N = 1000. Identify the AOQL value and its corresponding process fraction defective.

Solution: From the equation for *AOQ*, some values of *AOQ* versus *p* are:

p	0.000	0.01	0.02	0.04	0.08	0.16
P_A	1.000	0.939	0.810	0.521	0.159	0.008
AOQ	0.000	0.0090	0.0155	0.0204	0.0122	0.0012

Average Outgoing Quality



Inspection Yield

• The fraction of the units that pass the rectifying inspection process is the *inspection yield* (*Y*) given by

$$Y = P_A + (1 - P_A)(1 - p)$$

- When the fraction defective *p* is small, near 0, then the sampling plan will pass most lots and $Y \simeq 1$.
- When the fraction defective p is large then the sampling plan will reject most lots. Only the good units will pass the rectifying inspection operation so $Y \simeq 1 p$.

Inspection Yield

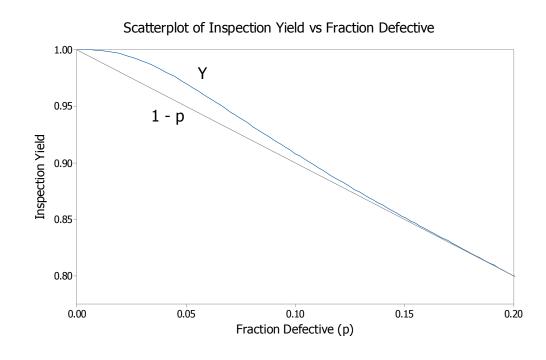
Example: Plot the yield curve for the n = 40, c = 1 plan.

Solution: From the equation for inspection yield, some values of Y versus p are:

p	0.000	0.01	0.02	0.04	0.08	0.16
P_A	1.000	0.939	0.810	0.521	0.159	0.008
Y	1	0.999	0.996	0.981	0.932	0.841

19

Inspection Yield



Net Income

• The OC curve interpretation of the sampling plan's performance is incomplete. We must look at it in terms of quality cost.

- The costs that must be considered are (cost per unit):
 - Material and Labor Cost (*M*)
 - Inspection Cost (*I*)
 - Selling Price (*S*)
 - External Failure Cost (*F*)

• Net income is calculated using the expection value method:

Net Income =
$$\sum_{\text{all } i} Cost_i \times P_i$$

where $Cost_i$ is the cost associated with cost item *i* for the entire lot and P_i is the probability of incurring cost item *i*.

Net Income

For the rectifying inspection process:

i	$Cost_i \times P_i$
Material and Labor	-M imes N
Inspection	$-I \times ASN$
Sales	$S \times Y \times N$
External Failure	$-F \times N \times AOQ$
Net Income	$\sum_{i} Cost_i \times P_i$

21

Net Income

Example: Calculate the net income for the n = 40, c = 1 plan using a lot size of N = 1000 when p = 0.04. The per unit material and labor cost is M = \$5, the inspection cost is I = \$1, the sales price is S = \$20, and the external failure cost is F = \$6 (replace all bad units with good ones, no shipping charges).

Solution: From the equation for net income:

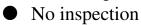
i	$Cost_i \times P_i$	$Cost_i \times P_i$	$Cost_i \times P_i$
M & L	$-M \times N$	-\$5 × 1000	-\$5000
Inspection	$-I \times ASN$	$-$1 \times 500$	-\$500
Sales	$S \times Y \times N$	$20 \times 0.981 \times 1000$	\$19620
Ext. Failure	$-F \times N \times AOQ$	$-\$6 \times 1000 \times 0.0204$	-\$122
Net Income	$\sum_{i} Cost_i \times P_i$		\$13998

23

Reference Inspection Processes

Every sampling plan should be compared to two reference inspection processes:

• 100% inspection



Reference Inspection Processes - 100% Inspection

i	$Cost_i \times P_i$	$Cost_i \times P_i$	$Cost_i \times P_i$
M & L	-M imes N	$-$5 \times 1000$	-\$5000
Inspection	$-I \times ASN$	$-\$1 \times 1000$	-\$1000
Sales	$S \times (1-p) \times N$	$20 \times (1 - 0.04) \times 1000$	\$19200
Ext. Failure	$-F \times N \times AOQ$	-\$6 × 1000 × 0	-\$0
Net Income	$\sum_{i} Cost_i \times P_i$		\$13200

25

Reference Inspection Processes - No Inspection

i	$Cost_i \times P_i$	$Cost_i \times P_i$	$Cost_i \times P_i$
Material and Labor	$-M \times N$	$-$5 \times 1000$	-\$5000
Inspection	$-I \times ASN$	$-$1 \times 0$	-\$0
Sales	$S \times Y \times N$	$20 \times 1 \times 1000$	\$20000
Ext. Failure	$-F \times N \times AOQ$	$-\$6 \times 1000 \times 0.04$	-\$240
Net Income	$\sum_{i} Cost_i \times P_i$		\$14760

Back to Net Income

We always want to maximize our net income. Which sampling strategy does that when p = 0.04? What if you don't know p?

i	n = 40, c = 1	100% Insp.	No Insp.
M & L	-\$5000	-\$5000	-\$5000
Inspection	-\$500	-\$1000	-\$0
Sales	\$19620	\$19200	\$20000
Ext. Failure	-\$122	-\$0	-\$240
Net Income	\$13998	\$13200	\$14760

27

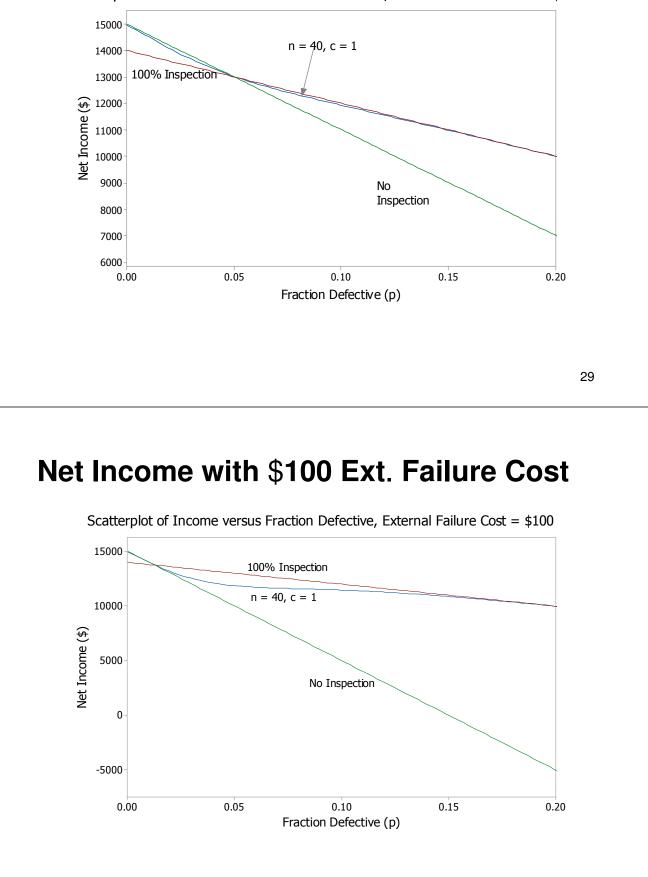
Net Income with \$6 Ext. Failure Cost



Copyright $\textcircled{\sc c}$ 2007-2016, Mathews Malnar and Bailey, Inc.

Net Income with \$40 Ext. Failure Cost

Scatterplot of Income versus Fraction Defective, External Failure Cost = \$40



Copyright © 2007-2016, Mathews Malnar and Bailey, Inc.

Conclusions

- The optimal sampling method is either no inspection or 100% inspection. The problem is determining which method is correct at the moment.
- The factors that determine the optimal sampling method (the one that maximizes net income) are the external failure cost and the process's fraction defective.
- If the external failure cost is very low (e.g. replace failed units with good ones) then don't inspect at all just ship the product.
- If the external failure cost is moderate (e.g. refund the sale price of the failed unit and replace it with a good one) or very high then use no inspection if the fraction defective is very low or 100% inspection if the fraction defective is very high. When the fraction defective is unknown the sampling plan approximates the best features of the no inspection and 100% inspection sampling plans.

References

Papadakis, Journal of Quality Technology, July 1985, Vol. 17, No. 3, p. 121-127, The Deming Inspection Criterion for Choosing Zero or 100 Percent Inspection (http://asq.org/data/subscriptions/jqt_open/1985/july/jqtv17i3papadakis)