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Definitions
 What is an experiment?

 An activity that includes collection and analysis of data and interpretation of the results
for the purpose of managing a process.

 The simplest experiment:
 Collect a representative sample from a single stable process
 Measure the sample
 Calculate sample statistics (point estimates) for the mean and standard deviation
 Calculate relevant confidence intervals or perform hypothesis tests
 Check distribution shape
 Interprete the results

 What is a designed experiment?
 A carefully structured experiment with highly desireable mathematical and statistical

properties designed to answer specific research questions about the values of a
population’s parameters and/or distribution shape.

Motivations for DOE
Recall Taguchi’s Loss Function:

L  k   m2  2

Motivations for DOE
 The purpose of DOE is to determine how a response y depends on one or more input

variables or predictors xi so that future values of the response can be predicted from the
input variables.

 DOE methods are necessary because the one variable at a time (OVAT) method (that is,
changing one variable at a time while holding all the others constant) cannot account for
interactions between variables.

 DOE requires you to change how you do your work but it does not increase the amount of
work you have to do. DOE allows you to learn more about your processes while doing the
same or even less work.

 DOE allows you to:
 Build a mathematical model for a response as a function of the input variables.
 Select input variable levels that optimize the response (e.g. minimizing, maximizing, or

hitting a target).
 Screen many input variables for the most important ones.
 Eliminate insignificant variables that are distracting your operators.
 Identify and manage the interactions between variables that are preventing you from

optimizing your design or process or that are confusing your operators.
 Predict how manufacturing variability in the input variables induces variation in the

response.
 Reduce variation in the response by identifying and controlling the input variables are

contributing the most to it.
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Chapter 1: Graphical Presentation of Data
 Types of data

 Attribute, categorical, or qualitative data, e.g. types of fruit
 Variable, measurement, or quantitative data, e.g. lengths measured in millimeters

 Types of variables: Use an Input-Process-Output (IPO) diagram to document all of your
process’s process input and process output variables:

Process

PIV

PIV
PIV

PIV

POV

POV

POV

POV

POV

POV

PIV

Process Input Variables (PIV)                 Process Output Variables (POV)

 Always graph the data!
 Bar charts
 Histograms
 Dotplots
 Stem-and-leaf plots
 Scatter plots
 Multi-vari charts
 Probability plots
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Chapter 2: Descriptive Statistics
 What to look for when you look at a histogram, dotplot, ... :

 Location or central tendency
 Variation, dispersion, scatter, noise
 Distribution shape, e.g. bell-shaped, symmetric or asymmetric (skewed), etc.
 Outliers

 Parameters and statistics
 A parameter is a measure of location or variation of a population.
 A statistic is a measure of location or variation of a sample.
 If the sample is representative of the population, then a sample statistic might be a

good estimate of a population parameter.
 Measures of location:

 Population mean 
 Sample median x  - middle value in the data set when the observations are ordered

from smallest to largest
 Sample mean x:

x  1
n 

i1

n

xi

 If the sample is representative of its population, then the sample mean x might be a
good estimate of the population mean .

 Measures of variation:
 Population standard deviation 
 Sample range

 Difference between the maximum and minimum values in a sample:
R  maxx1,x2,   minx1,x2, 

 Can be used to estimate the population standard deviation:

  R/d2

 Sample standard deviation s:

s 
 i2

df

where i  xi  x and df  n  1.
 If the sample is representative of its population, then the sample standard deviation s

might be a good estimate of the population standard deviation .
 Variance (s2 or 2)

 The square of the standard deviation is called the variance.
 The variance is the fundamental measure of variation.

 Variances can be added and subtracted from each other.
 Ratios of variances have meaning.
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 Distribution shape:
 The most common distribution that we deal with in introductory DOE is the normal

distribution, aka, the bell curve, the error function, the gaussion distribution
 Whether or not a sample appears to follow a normal distribution is often judged by

inspecting a histogram with a superimposed normal curve.
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 Normal Probability Plots
 The much-preferred method for judging normality is using a normal probability

plot.
 A normal plot is a mathematical transformation of a histogram and its

superimposed bell curve.
 The raw data values x are plotted on one axis and the expected positions of

those data values under the assumption of a normal distribution Ex|x~ are
plotted on the other axis.

 If the distribution is normal then the plotted points will fall along a straight line.
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Working With the Normal Distribution
 The normal distribution is normalized so that the area under the curve is exactly 1.0. Then a

vertical slice of the normal distribution can be interpreted as the probability of the variable
taking on the slice’s range of values.
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 The standard normal curve:
 Has   0 and   1.
 Is the distribution that is tabulated in the tables in the backs of statistics textbooks. e.g.

Table A.2 on p. 478 of DOE with MINITAB
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Working With the Normal Distribution
 Solving problems stated in measurement x units requires that we be able to transform from

those units and standard z units and back again.

z 
x  



x    z

Example: Find the fraction defective produced by a process to specification USL/LSL  0. 440  0. 020
inches if the mean of the process is   0. 445 inches and the standard deviation is   0. 010 inches.
Assume that the distribution is normal.
Solution: We need to find:

0. 420  x  0. 460;  0. 445,  0. 010

If we apply the standardizing transformation to the LSL:

zLSL  LSL


 0.4200.445
0.010  2. 50

Similarly the z value of the USL is zUSL  0.4600.445
0.010

 1. 50.

Now our interval on x:

0. 420  x  0. 460;0. 445,0.010

becomes an interval on z that we can evaluate from the normal tables:

2. 50  z  1. 50  0. 9332  0. 0062

 0. 9270  1  0. 0730

This means that 92.7% of the product is in spec and 7. 3% of the product is out of spec.

0.420

0

0.445
x

LSL USL

0.9270

0.460

-2.50 1.50
Z
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Example: Determine a two-sided specification for a process that has   4. 660 and   0. 008 if the
specification must contain 99% of the population. Assume that the distribution is normal.
Solution:

0

4.660
x

0.99

USLLSL

0.0050.005

Z

If 99% of the product must be in the symmetric two-sided specification then there will be 0. 5% of the
product out of spec on the high and low ends of the distribution. Since z0.005  2. 575 the required
specification is:

LSL  x  USL;4. 660,0.008  0. 99

where

LSL    z0.005

 4. 660  2. 575  0. 008

 4. 639

and

USL    z0.005

 4. 660  2. 575  0. 008

 4. 681

Finally we have:

4. 639  x  4. 681;4. 660,0. 008  0. 99

so our spec of USL/LSL  4. 681/4. 639 will contain 99% of the population.

0

4.660
x

0.99

USLLSL

0.0050.005

Z

4.639 4.681

-2.575 +2.575
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Counting
 Multiplication of choices
 Factorials
 Permutations
 Combinations

Counting: Multiplication of Choices
If a series of k decisions must be made and the first can be made in n1 ways, the second in n2 ways,
and so on, then the total number of different ways that all k decisions can be made, n total, is:

ntotal  n1n2nk

Example: If an arc lamp experiment is going to be constructed and there are five arctube designs,
three mount designs, two bulb types, and four bases, how many unique configurations can be
constructed?
Solution: Since n total  5  3  2  4  120 there are 120 unique lamp configurations. This experiment
design is called a full factorial design.

Counting: Factorials
If there are n distinct objects in a set and all n of them must be picked then the total number of
different ways they can be picked is:

Number of ways  nn  1n  2n  3321  n!

where ! indicates the factorial operation.

Counting: Permutations
 If there are n distinct objects in a set and r of them are to be picked where the order in which

they are picked is important, then there are nPr ways to make the selections where:

nPr  nn  1n  2. . . n  r  1

 n!
n  r!

 Derivation:

n!  nn  1n  2. . . n  r  1n  r. . . 3  2  1

nPr n  r!

nPr  n!
nr!

Example: How many different ways can a salesman fly to 5 different cities if there are 8 cities in his
territory?
Solution: The number of five-city flight plans is:

8P5  8!
85!

 8!
3!

 876543!
3!

 6720
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Counting: Combinations
 In many situations we do not care about the order that the objects are obtained, only how

many different sets of selections are possible. In these cases the permutation over-counts by
a factor of rPr.

 If there are n objects in a set and r of them are to be picked and the order in which the picked
objects are received is not important then there are nCr ways to make the selections where:

nCr  n
r  nPr

rPr
 n!

r!n  r!

Example (revisiting the air-travelling salesman): How many different sets of five cities can the
salesman visit if there are 8 cities in his territory?
Solution: The number of sets of five cities he has to select from is:

8
5   8!

5!85!

 8765!
5!3!

 56

Example: Product supplied from five different vendors is to be tested and compared for differences
in location. If each vendor’s mean is compared to every other vendor’s mean then how many tests
have to be performed?
Solution:

5
2

 5!
2!3!

 5  4  3!
2!3!

 10

If the numbers 1 through 5 are used to indicate the five vendors, then the two-vendor multiple
comparisons tests that must be performed are: 12, 13, 14, 15, 23, 24, 25, 34, 35, 45.

Example: An experiment with six variables is to be performed. If we are concerned about the
possibility of interactions between variables, then how many two-factor and three-factor interactions
are there?
Solution:

6
2

 6!
2!4!

 6  5  4!
2!4!

 15

6
3

 6!
3!3!

 6  5  4  3!
3!3!

 20

The two-factor interactions are: 12, 13, 14, 15, 16, 23, 24 25, 26, 34, 35, 36, 45, 46, 56 and the
three-factor interactions are: 123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235, 236, 245,
246, 256, 345, 346, 356, 456.

Example: A person is on 10 different medications. In addition to the good and bad effects of each
medication there is a risk of interactions between drugs. How many different two drug interactions
must the doctor be aware of in treating this person? Three drug interactions?
Solution: There are 10

2  45 possible two drug interactions and 10
3  120 possible three drug

interactions.
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Chapter 3: Inferential Statistics

Analysis of Experimental Data
 Data from experiments are analyzed for the values of distribution parameters (e.g. mean and

standard deviation) and distribution shape (e.g. normal).
 Point estimates for the distribution parameters are insufficient; hypothesis tests and

confidence intervals that make probabalistic statements about their values are necessary.

Review: Limits on a Population
Example: A population x has x  320, x  20, and is normally distributed. Find a symmetric
interval on x that contains 95% of the population.
Solution: The required interval is given by:

x  z/2x  x  x  z/2x  1  
Since 1    0. 95 we have   0. 05 and z/2  z0.025  1. 96. The required interval becomes:

320  1. 9620  x  320  1. 9620  1  0. 05

280.8  x  359.2  0. 95

280.8 320 359.2

+1.960-1.96

0.0250.025
0.95

X

Z

Gedanken Experiment
Suppose that we compare the histogram of the measurements from 1000 samples taken from a
normal distribution with   320 and   20 to the histogram of the sample means for samples of
size n  30 taken from the same population:

420390360330300270 390360330300270240

n = 1
n = 30

x x
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The Central Limit Theorem
The distribution of sample means x for samples of size n is normal  with mean:

x  x

and standard deviation:

x 
x

n

if the following conditions are met:
1. The population standard deviation x is known or the sample size is very large n  30 so

that x can be approximated with the sample standard deviation s.
2. The distribution of the population x is normal.
The central limit theorem is very robust to deviations from these conditions so the scope of its
applications is very broad.

Using the Central Limit Theorem
An immediate application of the Central Limit Theorem is for the calculation of an interval that
contains a specified fraction of the expected sample means. Given x, x, n, and  the interval that
contains 1  100% of the expected sample means is:

x  z/2x  x  x  z/2x   1  
where

x 
x

n

Limits on Sample Means
Example: Samples of size n  30 are drawn from a population that has x  320 and x  20. Find a
symmetric interval that contains 95% of the sample means.
Solution: Since the sample size is large the Central Limit Theorem is valid. The required interval for
xs is given by:

x  z/2x  x  x  z/2x   1  
Since 1    0. 95 we have   0. 05 and z/2  z0.025  1. 96. The standard deviation of the xs is

x 
x

n
 20

30
 3. 65

The required interval becomes:

320  1. 963. 65  x  320  1. 963. 65  1  0. 05

312.8  x  327.2  0. 95

+1.96

327.2320312.8

0-1.96

0.0250.025
0.95

X

Z
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Comparing the Intervals

420390360330300270240

359281

420390360330300270240

327313

n = 1

x

n = 30

x

Confidence Interval for the Population Mean
The Central Limit Theorem gives us:

x  z/2x  x  x  z/2x   1  
The random variable x is bounded on the lower and upper sides in two inequalities:

x  z/2x  x and x  x  z/2x

If we solve these inequalities for x we obtain:

x  x  z/2x and x  z/2x  x

Now, if we put these two inequalities back together:

x  z/2x  x  x  z/2x   1  
which is the two sided 1  100% confidence interval for the unknown population mean x based
on a sample which has sample mean x.

Graphical Interpretation
The upper and lower confidence limits given by:

UCL/LCL  x  z/2x

represent the extreme high and low values of x that could be expected to deliver the experimental x
value.

LCL x UCL


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Confidence Interval Example
Example: Construct a two-sided 95% confidence interval for the true population mean based on a
sample of size n  30 which yields x  290. The population standard deviation is   20 and the
distribution of the xs is normal.
Solution: Since the Central Limit Theorem is satisfied (distribution of x is normal and x is known)
the confidence interval is given by:

x  z/2x  x  x  z/2x   1  
Since   0. 05 we have z/2  z0.025  1. 96 so:

 290  1. 96 20
30

 x  290  1. 96 20
30

 1  0. 05

The required confidence interval is:

282.8  x  297.2  0. 95

That is, we can be 95% confident that the true but unknown value of the population mean lies
between 282.8 and 297.2.

Confidence Interval Interpretation
 A two-sided confidence interval for the mean has the form

PLCL    UCL  1  

 The interval LCL    UCL indicates the range of possible  values that are statistically
consistent with the observed value of x.

 If the confidence interval is sufficiently narrow then the interval LCL    UCL will indicate a
single action. Take it.

 If the confidence interval is too wide then the interval will indicate two or more actions. More
data will be required.

 Ask yourself:
 What action would I take if   LCL?
 What action would I take if   UCL?
 If the two actions are the same then take the indicated action.
 If the two actions are different then the confidence interval is too wide. When in doubt,

take more data.
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Hypothesis Tests
Definition: A hypothesis test is a statistically based way of deciding which of two complementary
statements about a population parameter or distribution is true on the basis of sample data. The two
statements are called the null hypothesis H0  and the alternative hypothesis HA.

Hypothesis Tests
 One population:

 H0 :   320 versus HA :   320 (two-tailed test)
 H0 :   320 versus HA :   320 (one- / left-tailed test)
 H0 :   320 versus HA :   320 (one- / right-tailed test)
 H0 :   20 versus HA :   20
 H0 :   20 versus HA :   20
 H0 :   20 versus HA :   20
 H0 : p  p0 versus HA : p  p0

 H0 :   0 versus HA :   0

 H0 :The distribution of x is  versus HA :The distribution of x is not 
 H0 :The distribution of s2 is 2 versus HA :The distribution of s2 is not 2

 Two populations:
 H0 : 1  2 versus HA : 1  2

 H0 : 1  2 versus HA : 1  2

 H0 : p1  p2 versus HA : p1  p2

 H0 : 1  2 versus HA : 1  2

 H0 : The distribution shape of x1 is the same as the distribution shape of x2 versus
HA : The distribution shape of x1 is NOT the same as the distribution shape of x2.

 Many populations:
 H0 : 1  2   versus HA : i  j for at least one i, j pair
 H0 : 1  2   versus HA :  i   j for at least one i, j pair
 H0 : p1  p2   versus HA : pi  p j for at least one i, j pair
 H0 : 1  2   versus HA : i  j for at least one i, j pair

Which Test?
 What type of data?

 Measurement/variable
 Attribute

 Binary/dichotomous, e.g. defectives
 Count, e.g. defects

 How many populations?
 What population characteristic?

 Location
 Variation
 Distribution Shape
 Other

 Exact or approximate method?
 See QES Appendix B: Hypothesis Test Matrix
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Understanding Hypotheses
 Statistical hypotheses have two forms, one stated mathematically and the other stated in the

language of the context. For example, in SPC the hypothesis H0 :   25 corresponds to the
statement the process is in control.

 Sagan’s Rule: To test the hypotheses

Ho: Something ordinary happens

versus

HA: Something extraordinary happens,

the extraordinary claim requires extraordinary evidence.
 In quality engineering, sometimes the hypotheses are determined by historical choice:

 SPC: H0: the process is in control versus HA: the process is out of control.
 Acceptance sampling: H0: the lot is good versus HA: the lot is bad.

General Hypothesis Testing Procedure
1. Formulate the null H0  and alternative hypotheses HA. Put the desired conclusion in HA.
2. Specify the significance level  (the risk of a Type 1 error).
3. Construct accept and reject criteria for the hypotheses based on the sampling distribution

of an appropriate test statistic at the required significance level.
4. Collect the data and calculate the value of the test statistic.
5. Compare the test statistic to the acceptance interval and decide whether to accept or reject

H0. In practice, we never accept H0. We either reject H0 and accept HA or we say that the
test is inconclusive.

Hypothesis Test Example
Example A: Test the hypotheses H0 :   320 vs. HA :   320 on the basis of a sample of size
n  30 taken from a normal population with standard deviation   20 which yields x  310. Use the
5% significance level.
Solution: The two hypotheses are already given to us. The appropriate statistic to test them is x. If x
falls very close to 320 then we will accept H0, otherwise we will reject it. The Central Limit Theorem
describes the distribution of the xs and with   0. 05 we have a critical z value of z0.025  1. 96. This
means that we will accept H0 if the test statistic falls in the interval 1. 96  z  1. 96. The z value
that corresponds to x is given by:

z 
x  0
x

 310  320
20/ 30

 2. 74

Since z  2. 74 falls outside the acceptance interval x must be significantly different from the
hypothesized mean of H0 :   320 so we must reject H0 in favor of HA :   320.

310 320 x

0.95

REJECT Ho REJECT Ho

0.025 0.025

-2.74 -1.96 0 +1.96
z
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Relationship Between Confidence Intervals and Hypothesis Tests
 The confidence interval and hypothesis test provide different ways of performing the same

analysis but they both offer unique features that prohibit the exclusive use of one method or
the other.

 The confidence interval for the mean is centered on the sample mean:

UCL/LCL  x  

where the confidence interval half-width is

  z/2x

 The accept/reject decision limits for the hypothesis test are centered on 0:

UDL/LDL  0  

where  has the same value as the confidence interval half-width.
 The confidence interval is the set of all possible values of 0 for which we would accept H0,

so 
 If 0 falls inside of the confidence limits then we accept H0 :   0 and if 0 falls outside of

the confidence limits then we reject H0.
Example: Construct the confidence interval for the population mean in Example A and use it to test
the hypotheses H0 :   320 vs. HA :   320.
Solution: The confidence interval is

 310  1. 96 20
30

 x  310  1. 96 20
30

 0. 95

302.8  x  317. 2  0. 95

The confidence interval does NOT contain   320 so we must reject H0 :   320 in favor of
HA :   320.

Errors in Hypothesis Testing
There are two kinds of errors that can occur in hypothesis testing:
1. Type 1 Error: We reject the null hypothesis when it is really true.
2. Type 2 Error: We accept the null hypothesis when it is really false.
These errors and the situations in which correct decisions are made are summarized in the following
table:

The truth is: H0 is true H0 is false

The test says accept H0 Correct Decision Type 2 Error

The test says reject H0 Type 1 Error Correct Decision

Errors in the Legal System
 Hypotheses:

 H0 :The defendant is not guilty
 HA :The defendant is guilty

 Quiz: Was the correct decision made and, if not, what type of error occurred?
 A not guilty verdict for an innocent person.
 A guilty verdict for an innocent person.
 A guilty verdict for a guilty person.
 A not guilty verdict for a guilty person.
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Understanding Type 1 and Type 2 Errors
In a final inspection operation just before shipping to the customer:
 If truly good material is tested and the test returns an erroneous Reject H0: the material is bad

result then a Type 1 error has occurred. This compromises the manufacturer’s position (he
cannot sell this good material) so the risk of committing a Type 1 error is often called the
manufacturer’s risk.

 If truly bad material is tested and the test returns an erroneous Accept H0: the material is
good result then a Type 2 error has occurred. This compromises the consumer’s position (he
has just approved the use of bad material) so the risk of committing a Type 2 error is often
called the consumer’s risk.

Decision Errors in Acceptance Sampling
The hypotheses are:

H0: the lot is good versus HA: the lot is bad

Decision Errors in SPC

UCL

CL

LCL

Time

Correct decision

Type 1 error

Correct decision

Type 2 error

H0 is true H0 is false
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Hypothesis Test p Values
 p values provide a concise and universal way of communicating statistical significance.
 The p value of a hypothesis test is the probability of obtaining the observed experimental

result or something more extreme if the null hypothesis was true.
 p values are compared directly to  (typically   0. 05 or   0. 01) to make decisions about

accepting or rejecting the null hypothesis.
 If p   accept H0, that is, the data support the null hypothesis.
 If p   reject H0, that is, the data don’t support the null hypothesis.

 For two tailed hypothesis tests, the p value corresponds to the area in the two tails of the
sampling distribution of the test statistic outside of the value obtained for the test statistic.

 For one tailed hypothesis tests, the p value corresponds to the area in one tail of the sampling
distribution of the test statistic outside of the value obtained for the test statistic.

p Values

2.8

0.002555

0

0.002555

-0.36

0.3594

0

0.3594

X

1.780

0.03754

X

-0.9 0

0.8159

p = 0.0051
z = 2.8

Two-tailed test

p =0.72
z = -0.36

Two-tailed test

Right-tailed test

p = 0.038
z = 1.78

Right-tailed test

p = 0.816
z = -0.9

p Values
Example: Find the p value for Example A.
Solution: Since z0.003  2. 74 the p value for this Example is p  20. 003  0. 006. Because
p  0. 006    0. 05 we must reject the claim H0 :   320.

310 320

+2.74-2.74 0

0.003 0.003

x

z
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Type 1 Error
Example: In a hypothesis test for H0 :   18 vs. HA :   18 the null hypothesis is accepted if the
mean of a sample of size n  16 falls within the interval 17.2  x  18.8. The population being
sampled is normal and has   1. 5. Find the probability of committing a Type 1 error.
Solution: Type 1 errors occur when the null hypothesis is really true but a sample is obtained with a
mean that falls outside of the acceptance interval. The probability of xs falling inside the acceptance
interval is:

  z/2x  x    z/2x ;  0,x   1  
where 0 is the hypothesized mean in the null hypothesis (i.e. 0  18). If we check the upper
decision limit UDL  18.8 we have   z/2x  UDL and solving for z/2:

z/2 
UDL  

x
 18.8  18.0

1. 5/ 16
 2. 13

Similarly, the lower decision limit LDL  17.2 corresponds to z0.0166  2. 13. Since z0.0166  2. 13
the probability of committing a Type 1 error is   20. 0166  0. 033.

17.2 18 18.8

-2.13 0 +2.13

0.0166 0.0166

x

z

ACCEPT Ho
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Type 2 Error
Example: In a hypothesis test for H0 :   18 vs. HA :   18 the null hypothesis is accepted if the
mean of a sample of size n  16 falls within the interval 17.2  x  18.8. The population being
sampled is normal and has   1. 5. Find the probability of committing a Type 2 error when the true
mean is   17.4.
Solution: Type 2 errors occur when the null hypothesis is really false but the test returns an
erroneous accept H0 result. The probability of committing a Type 2 error when the null hypothesis is
really false is:

    z/2x  x    z/2x ;  0;x 

In this case we have:

    z/2x  x    z/2x ;  0;x 

 17. 2  x  18.8;  17.4;0.375

 0. 53  z  3. 73

 1. 00  0. 298

 0. 702

17.2

0

17.4

x

Z
18.0

ACCEPT Ho

0.702

18.8

-0.53 3.73
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One Sample t Test
Example B: Test the hypothesis H0 :   440 vs. HA :   440 if a sample of size n  10 yields
x  442 and s  5. 1. Assume that the distribution of x is normal and work at a 5% significance level.
Solution: This is a hypothesis test for one sample mean but the central limit theorem doesn’t apply
because we don’t know  and don’t have a good estimate for it. So ...

x



Student's t

Solution: Since we don’t know the true population standard deviation we must use Student’s t
distribution to characterize the distribution of sample means. From Student’s t distribution with
n  1  9 degrees of freedom we have t0.025,9  2. 26 so the acceptance interval for H0 is
2. 26  t  2. 26. The value of the t statistic is:

t  x0

s/ n

 442440
5.1/ 10

 1. 24

Since the sample mean falls so close to the hypothesized mean and easily inside the acceptance
interval we must accept the null hypothesis H0 :   440.

+2.260-2.26

0.0250.025

X

t

ACCEPT Ho

442

1.24

440
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Example: Find the p value for Example B.
Solution: The p value is given by:

1  p  P1. 24  t  1. 24

where the Student’s t distribution has n  1  9 degrees of freedom. Generally it would be necessary
to interpolate in a t table to estimate the true p value but MINITAB or Excel gives the exact p value:

p  20. 1232  0. 246

Since p  0. 246    0. 05 we must accept H0 :   440.

440

1.24-1.24 0

0.1232 0.1232

x

t

442

Confidence Interval for  When  is Unknown
  unknown
 Distribution of x is normal
 The confidence interval for the population mean based on a sample of size n taken from a

normal population which yields x and s is given by:

Px  t/2s/ n    x  t/2s/ n   1  
where t/2 comes from Student’s t distribution with   n  1 degrees of freedom.

Confidence Interval
Example: Construct the 95% confidence interval for the true population mean for the situation in
Example B.
Solution: The confidence interval for  is:

Px  t/2s/ n    x  t/2s/ n   1  

P 442  2. 26  5. 1/ 10    442  2. 26  5. 1/ 10  0. 95

P438.4    445.6  0. 95

That is, we can be 95% confident that the true population mean falls in the interval from 438.4 to
445.6.
This confidence interval demonstrates the relationship between confidence intervals and hypothesis
tests: a confidence interval for the mean is the set of population means for which the null hypothesis
must be accepted, so because the example’s confidence interval contains   440 we know that we
have to accept the null hypothesis H0 :   440.
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Two Independent Sample t Test
Data: Two samples of measurement data of size n1 and n2 from independent normal populations
with equal variances 1

2  2
2 .

Hypotheses Tested:
 H0 : 1  2 vs. HA : 1  2

 H0 : 1  2 vs. HA : 1  2

 H0 : 1  2 vs. HA : 1  2

Test Statistic:

t  x 1  x 2

spooled 1
n1
 1

n2

where

spooled 
 1i

2  2i
2

n1  1  n2  1


n1  1s1
2  n2  1s2

2

n1  n2  2

Critical Values:
 For H0 : 1  2 vs. HA : 1  2 accept H0 iff t/2,n1n22  t  t/2,n1n22

 For H0 : 1  2 vs. HA : 1  2 accept H0 iff t  t,n1n22

 For H0 : 1  2 vs. HA : 1  2 accept H0 iff t  t,n1n22

Behrens-Fisher Problem:
 Behrens and Fisher asked how to perform the two-sample t test when the two variances are

not equal.
 The solution is called the Satterthwaite or Welch method.
 The Satterthwaite method is in excellent agreement with the assumed-equal-variances

method when the variances are equal so we usually use the Satterthwaite method at all
times.

 The Satterthwaite method is painful to calculate so it’s usually done with software.
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Two Independent Sample t Test
Example: Samples are drawn from two processes to compare their means. The first sample yields
n1  10, x 1  278, and s1  4. 4. The second sample yields n2  12, x 2  280, and s2  5. 9. Test the
hypotheses H0 : 1  2 vs. HA : 1  2 at the   0. 05 significance level.
Solution: The test statistic for the two independent sample t test is:

t  x 1  x 2

spooled 1
n1
 1

n2

where

spooled 
n1  1s1

2  n2  1s2
2

n1  n2  2

For the given data:

spooled 
10  14. 42  12  15. 92

10  12  2
 5. 28

so the test statistic is:

t  278  280
5. 28 1

10
 1

12

 0. 88

Since t/2,n1n22  t0.025,20  2. 086 the acceptance interval for the null hypothesis is:

Accept H0 iff  2. 086  t  2. 086

The test statistic t  0. 88 falls within this interval so we must accept the null hypothesis and
conclude that 1  2.

-2 0
x

0.95

REJECT Ho REJECT Ho

0.025 0.025

-2.086 -0.88 0 +2.086
t


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Confidence Interval for the Difference Between Two Population Means
 1 and 2 are equal but unknown
 Both samples come from normal populations
 The confidence interval for the difference between two population means is given by:

Px  t/2spooled 1
n1

 1
n2

   x  t/2spooled 1
n1

 1
n2

  1  

where

x  x 1  x 2

  1  2

spooled 
n1  1s1

2  n2  1s2
2

n1  n2  2

and t/2 has   n1  n2  2 degrees of freedom.

Confidence Interval
Example: Two samples yield the following values:

n1  8, x 1  18. 8, s1  1. 5 and n2  10, x 2  15.6, s2  2. 4
Construct the 95% confidence interval for the difference between the population means.
Solution: We must assume that the populations being sampled are normal and that the variances
are equal. The pooled standard deviation is:

spooled 
8  11. 52  10  12. 42

8  10  2
 2. 06

With x  18.8  15.6  3. 2 and with   8  10  2  16 degrees of freedom we have t0.025,16  2. 12.
The confidence interval is:

P3.2  2. 12  2. 06  1
8
 1

10
   3. 2  2.12  2.06  1

8
 1

10
  0.95

P1. 13    5. 27  0. 95
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Paired Sample t Test
Data: n paired samples x1i,x2i of measurement data taken from normal populations. The data pairs
are ”before and after” type.
Test Statistic: The quantities of interest are the signed differences between the paired observations:

xi  x1i  x2i

The mean and standard deviation of these differences are required:

x  1
n 

i1

n

xi

and

s 
xi  x2

n  1

The test statistic is:

t  x
s/ n

Hypotheses Tested:
 H0 :   0 vs. HA :   0
 H0 :   0 vs. HA :   0
 H0 :   0 vs. HA :   0

Critical Values:
 For H0 :   0 vs. HA :   0 accept H0 iff t/2,n1  t  t/2,n1

 For H0 :   0 vs. HA :   0 accept H0 iff t  t,n1

 For H0 :   0 vs. HA :   0 accept H0 iff t  t,n1
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Paired Sample t Test
Example: The following table shows measurements taken by two operators on the same 10 parts.
Determine if there is evidence that they are getting different readings at the 5% significance level.

Part Number 1 2 3 4 5 6 7 8 9 10

Operator 1 2.4 2.8 3.1 2.7 3.0 2.5 2.2 4.3 3.8 3.4

Operator 2 2.6 2.9 3.4 2.7 2.9 2.7 2.3 4.4 4.1 3.4

Solution: The differences between the paired readings are shown below:

Part Number 1 2 3 4 5 6 7 8 9 10

Operator 1 2.4 2.8 3.1 2.7 3.0 2.5 2.2 4.3 3.8 3.4

Operator 2 2.6 2.9 3.4 2.7 2.9 2.7 2.3 4.4 4.1 3.4

xi -0.2 -0.1 -0.3 0.0 0.1 -0.2 -0.1 -0.1 -0.3 0.0

The mean of the differences is x  1. 2/10  0. 12 and the standard deviation of the differences is
s  0. 13. The test statistic is t  0.12

0.13/ 10
 2. 92. If the hypotheses tested are H0 :   0 vs.

HA :   0 then the critical value of the test statistic is t0.025,9  2. 26 and the acceptance interval for
the null hypothesis is 2. 26  t  2. 26. Since t  2. 92 falls outside this interval we must reject H0

and conclude that there is a statistically significant difference between the two operators.
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Distribution of Sample Variances
If repeated samples of size n are drawn from a normal population and the sample variances are
determined, then the distribution of sample variances is chi-square with n  1 degrees of freedom.

Notes About the 2 Distribution
 Always skewed right
 Measurement units are transformed to standard units by

2  n  1 s


2

 Mean is 2  n  1

 Changes shape as n changes
 Becomes normal  as n  
 Used to construct confidence intervals for the population variance
 Used to determine accept/reject limits for hypothesis tests based on one sample variance
 Variances are very very noisy

0 
S

2

2


2

n-10

   = (n-1) (s/   ) 2 2

Confidence Interval for 2

The two sided confidence interval for 2 determined from the sample variance s2 with a sample of
size n is given by:

P n  1
1/2

2 s2  2  n  1
/2

2 s2  1  

where the chi-square distribution has n  1 degrees of freedom.
(Note: The subscript on 2 indicates the left tail area under the 2 distribution. Some texts index 2

tables by the right tail area instead.)

Confidence Interval for 2

Example: A random sample of size n  18 taken from a normal population yields a standard
deviation of s  5. 4. Determine a 95% confidence interval for the population standard deviation.
Solution: The confidence interval is given by:

P n  1
1/2

2
s2  2  n  1

/2
2

s2  1  

From the 2 tables we find 0.025,17
2  7. 56 and 0.975,17

2  30.19. The required confidence interval for
the population variance is:

P 17
30.19

5. 42  2  17
7. 56

5. 42  0. 95

P16. 4  2  65.6  0. 95

P4. 05    8. 10  0. 95
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Hypothesis Test for One Variance
The hypotheses to be tested are H0 : 2  0

2 vs. HA : 2  0
2. The distribution of sample variances

suggests the following form for the acceptance interval for H0:

P
/2

2

n  1
0

2  s2 
1/2

2

n  1
0

2  1  

However, it is generally easier to make the decision on the basis of the test statistic:

2 
n  1s2

0
2

with acceptance interval for the null hypothesis given by:

P/2
2  2  1/2

2   1  
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Hypothesis Test for One Variance
Example: A random sample of size n  25 taken from a normal population yields s2  75. Test the
hypotheses H0 : 2  50 vs. HA : 2  50 at the   0. 05 significance level.
Solution: The 2 statistic is:

2 
n  1s2

0
2 

2475
50

 36

From the 2 table we have 0.025,24
2  12.4 and 0.975,24

2  39.4 so the acceptance interval for H0 is:

P0.025
2  2  0.975

2   0. 95

P12.4  2  39. 4  0. 95

Since 2  36 falls easily inside of the acceptance interval we must accept H0 : 2  50.
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Distribution of the Ratio of Two Sample Variances
If two samples of size n1 and n2 are drawn from normal populations that have equal population
variances, then the ratio of their sample variances F  s1

2/s2
2 follows the F distribution with n1  1 and

n2  1 numerator and denominator degrees of freedom, respectively.

1 F = S  / S0 2

1 2

2

Notes About the F Distribution
 Always skewed right
 Mean is F  1
 Changes shape as n1 and n2 change
 Used to determine accept/reject limits for hypothesis tests comparing two sample variances
 F  s1

2/s2
2 is usually constructed such that s1  s2 and only right tail F values are indexed in the

tables, sometimes by right and sometimes by left tail area
 Variances are very very noisy
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Hypothesis Test for Two Variances
Example: Random samples of size n1  12 and n2  16 are drawn from two populations. The
sample standard deviations are found to be s1  145 and s2  82. Test to see if there is evidence that
the population variances are equal at the   0. 05 significance level.
Solution: The hypotheses to be tested are H0 : 1

2  2
2 vs. HA : 1

2  2
2. The acceptance interval

for the null hypothesis is given by:

P 0 
s1

2

s2
2
 F1  1  

From the F tables with 11 numerator and 15 denominator degrees of freedom we find F0.95  2. 51.
The F statistic is given by:

F  s1
2/s2

2

 145/822

 3. 13

Since F  3. 13 falls outside the acceptance interval we must reject H0 and conclude that there is
evidence that the two populations being sampled have different variances.

0 1 2.50 3.13

Accept Ho

0.95 0.05
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Summary of Hypothesis Testing Methods
One Paired Two Many

Mean z or t t xi  x1i  x2i t 1  2  ANOVA

sign test paired sample sign t 1  2  MCT(e.g., Tukey, )

Wilcoxon SRT Wilcoxon paired SR Tukey’s quick test Kruskal-Wallis

Boxplot slippage Mood’s median

Mann-Whitney Regression

Standard 2 F Bartlett

Deviation Levene Hartley’s Fmax

squared ranks Levene

ANOVA or regr. of logs2 

Proportion exact binomial McNemar Fisher’s exact 2

Larson’s nomogram normal approx. ANOVA of sin1 p i

normal approx. Cochran’s Q

Binary logistic regression

Count exact Poisson exact binomial ANOVA of xi

normal approx. normal approx. log-linear models

F Poisson regression

Dist. probability plot Smirnov

Shape 2goodness of fit

Shapiro-Wilk

Anderson-Darling

Kolmogorov
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Summary of Sampling Distributions and Confidence Intervals
Quantity Condition Sampling Distribution

Mean CLT2   z/2x  x    z/2x  1  

Mean  unknown, x1 P  t/2s/ n  x    t/2s/ n  1  

Variance x P
/2

2

n1 
2  s2 

1/2
2

n1 2  1  

Standard Deviation x, n  30 P 1  z/2

2n
  s  1 

z/2

2n
  1  

Ratio of Variances x1 , x2 P F1/2 
s1

2

s2
2  F/2  1  

Proportion n large P p  z/2
p1p

n  p  p  z/2
p1p

n  1  

Proportion n large NA

Quantity Condition Confidence Interval

Mean CLT2 x  z/2x    x  z/2x  1  

Mean  unknown, x1 Px  t/2s/ n    x  t/2s/ n  1  

Variance x P n1
1/2

2 s2  2  n1
/2

2 s2  1  

Standard Deviation x, n  30 P s/ 1 
z/2

2n
   s/ 1  z/2

2n
 1  

Ratio of Variances x1 , x2 NA

Proportion n large P p  z/2
p1p 

n  p  p  z/2
p1p 

n  1  

Proportion n large P 0  p  1
2n 1,2x1

2  1   where x is #failures

Notes:
1) x means that the distribution of x is normal.
2) CLT (Central Limit Theorem) requires that n  30 or x with  known. If  is unknown or
distribution of x is not normal then use n  30 and x  s.
3) The 2 distribution is indexed by its left tail area. For example: 0.05,10

2  3. 94 and 0.95,10
2  18.3.

4) The F distribution is indexed by its right tail area.
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Test H0 vs. HA : (H0 Acceptance Interval) Test Statistic

One Mean

 known

  0 vs.   0 : z/2 z  z/2 

  0 vs.   0 : z z  

  0 vs.   0 :   z  z

z 
x0

/ n

One Mean

 unknown

  0 vs.   0 : t/2 t  t/2 

  0 vs.   0 : t t  

  0 vs.   0 :   t  t

t  x0

s/ n

  n  1

Two Means

Independent Samples

s known

1  2 vs. 1  2 : z/2 z  z/2 

1  2 vs. 1  2 : z z  

1  2 vs. 1  2 :   z  z

z  x 1x 2

1
2

n1

2

2

n2

Two Means

Independent Samples

s unknown but equal

1  2 vs. 1  2 : t/2 t  t/2

1  2 vs. 1  2 : t t  

1  2 vs. 1  2 :   t  t

t 
x 1x2

spooled 1
n1
 1

n2

spooled
n11s1

2n21s2
2

n1n22

  n1n22

Two Means

Independent Samples

s unknown, unequal

1  2 vs. 1  2 : t/2 t  t/2

1  2 vs. 1  2 : t t  

1  2 vs. 1  2 :   t  t

t  x 1x 2

s1
2

n1


s2
2

n2

  minn1  1,n2  1

 

s1
2

n1


s2
2

n2

2

1
n11

s1
2

n1

2

 1
n21

s2
2

n2

2

One Mean

Paired Samples

 unknown

  0 vs.   0 : t/2 t  t/2 

  0 vs.   0 : t t  

  0 vs.   0 :   t  t

x i x1ix2i

t  x
sx/ n

  n  1

One Variance

2  0
2 vs. 2  0

2 : /2
2  2 1/2

2 

2  0
2 vs. 2  0

2 : 0  2 1
2 

2  0
2 vs. 2  0

2 : 
2  2  

2  n1s2

0
2

  n  1

Two Variances 1
2  2

2 vs. 1
2  2

2 : F1/2 F  F/2 

1
2  2

2 vs. 1
2  2

2 : 0  F  F

F  s2
2

s1
2

2  n2  1

1  n1  1

Notes:

1) All populations being sampled are normally distributed.

2) The 2 distribution is indexed by left tail area.

3) The F distribution is indexed by right tail area.
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Sample Size Calculations
 All data require some type of analysis
 Point estimates (e.g. x and s) are insufficient
 Appropriate analysis methods take into account estimation precision
 Appropriate analysis methods are:

 Confidence intervals
 Hypothesis tests

 After the method of analysis has been identified a sample size calculation can be done to
determine the unique number of observations required to obtain practically significant results.
 If the sample size is too small there may be excessive risks of type1 and type 2 errors.
 If the sample size is too large the experiment will be oversensitive and wasteful of

resources.

Confidence Interval for the Mean ( known)
Conditions:
  known
 Distribution of x is 

Confidence Interval: The confidence interval will have the form:

x      x    1  
where

 
z/2
n

The value of  should be chosen so that a single management action is indicated over the range of
the confidence interval.
Sample Size: To be 1  100% confident that the population mean  is within  of the sample
mean x, the required sample size is:

n 
z/2


2

Example: Find the sample size required to estimate the population mean to within 0. 8 with 95%
confidence if measurements are normally distributed with standard deviation   2. 3.
Solution: The sample size required is:

n  z0.025


2

 1.962.3
0.8

2

 31.8  32

Or using MINITAB Stat Power and Sample Size Sample Size for Estimation Mean (Normal):
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Confidence Interval for the Mean ( unknown)
 When  is unknown it will be necessary to estimate it from the sample standard deviation and

the t distribution will be used instead of the z distribution to calculate the confidence interval.
 But t/2 depends on the sample size so our sample size equation for n is transcendental, i.e.

has inseparable n dependencies on both sides of the equation so the sample size must be
found by iterating.

Example: Determine the sample size necesary to estimate, with 95% confidence, the mean of a
population with precision   10 when x  20.
Solution: If we knew x then:

n  z0.025x



2
 1. 96  20

10

2
 16.

With n  16,   15, and t0.025  2. 13 so

n  t0.025x



2

 2. 13  20
10

2
 19.

Eventually, with n  18,   17, and t0.025  2. 11:

n  t0.025x



2

 2. 11  20
10

2
 18.

Or using MINITAB Stat Power and Sample Size Sample Size for Estimation Mean (Normal):

Design of Experiments, Copyright © 1999-2022 Paul Mathews 40



Confidence Interval for the Difference

Between Two Population Means
Conditions:
 1 and 2 are known and equal
 Distributions of x1 and x2 are 

Confidence Interval: The confidence interval for   1  2 is

x      x    1  
where

  z/2
2
n 

and x  x 1  x 2.
Sample Size: To be 1  100% confident that the difference between two population means is
within  of the difference in the sample means, the required sample size is:

n  2
z/2


2

Example: What sample size should be used to determine the difference between two population
means to within 6 of the estimated difference to 99% confidence. The populations are normal and
both have standard deviation   12. 5.
Solution: The required sample size is:

n  2
z/2



2

 2 2.57512.5
6

2

 57.6  58

MINITAB does not offer a sample size calculation for the confidence interval for the difference
between two population means but the Stat Power and Sample Size 2-Sample t menu can be
tricked into doing the calculation.
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Input Information for the Sample Size Calculation
 To calculate the sample size we need ,x, and .
 Use   0. 05 or whatever value is appropriate.
 Sources for the x estimate:

 Historical data
 Preliminary study
 Data from a similar process
 Expert opinion
 Published results (beware of publication bias)
 Guess

 Confidence interval half-width :
 Must be chosen by the researcher
 Must be sufficiently narrow to indicate a unique management action
 Start from outrageous high and low values, work to the middle
 Be careful of relative confidence interval half-width

Issues in Specifying the Confidence Interval Half-width
 In measurement units:

x    x  x    1  
(Note: This is the only method supported in most sample size calculation software. The other
methods express  in relative terms and are not supported in software.)

 Relative to the mean:

x1    x  x1    1  

 Relative to the standard deviation:

x  s  x  x  s  1  

 Jacob Cohen, Statistical Power Analysis for the Behavioral Sciences.
 This method is bad practice! See Russ Lenth’s discussion.

Sensitivity of the Confidence Interval
If the standard deviation is unknown the sample size is

n 
t/2x



2

 Student’s t distribution approaches the normal z distribution very quickly so the
approximation of t/2 with z/2 has little effect on the sample size unless the sample size is very
small.

 Compared to other factors, the magnitude of t/2 or z/2 changes slowly with  so the value of
 has little effect on the sample size.

 Sample size is proportional to the square of the standard deviation, i.e. n  x
2
, so changes to

the estimated value of x will have a big effect on sample size. For example, doubling the
value of the standard deviation estimate will quadruple the sample size.

 Sample size is inversely proportional to the square of the confidence interval half-width, i.e.
n  1

2 , so changes to the estimated value of  will have a big effect on sample size. For
example, halving the value of the confidence interval half-width will quadruple the sample
size.

 Recommendations:
 Don’t worry too much about the value of  (just use   0. 05).
 Don’t worry too much about the approximation t/2  z/2.
 Be very careful determining the standard deviation.
 Be very careful choosing a value for the confidence interval half-width.
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Sample Size Calculations for Hypothesis Tests
 When determining sample size for hypothesis tests it is necessary to specify the conditions

and probabilities associated with Type 1 and Type 2 errors.
 The power of a test given by:

  1  
is the probability of rejecting H0 when HA is true.

 A value of power is always associated with a corresponding value of effect size  - the
smallest practically significant difference between the population parameter under H0 and HA

that the experiment should detect with probability .
 In all sample size calculations round n up to the nearest integer value.

Sample Size for a One-Sided Hypothesis Test

of the Population Mean (x known)
Conditions:
 x is known
 x is normally distributed.

Hypotheses: H0 :   0 vs. HA :   0 or alternatively, H0 :   0 vs. HA :   0 where     0.
Sample Size: The sample size required to obtain power P  1   for a shift from   0 to
  0   is given by:

n 
zz x



2

where z and z are both positive.

n 
z  z x



2

K  0  
z

z  z
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Example: An experiment will be performed to determine if the burst pressure of a small pressure
vessel is 60psi or if the burst pressure is greater than 60psi. The standard deviation of burst
pressure is known to be 5psi and the experiment should reject H0 :   60 with 90% probability if
  63. Determine the sample size and acceptance condition for the experiment. The distribution of x
is normal and use   0. 05.
Solution: The hypotheses to be tested are H0 :   60 vs. HA :   60. The power of the experiment
to reject H0 when   63 or   3 is P  1    0. 90 so   0. 10. The sample size is given by:

n  z0.05z0.10 x



2

 1.6451.2825
3

2

 24

The critical accept/reject value of x is given by:

K  0  
z0.05

z0.05z0.10


 60  3 1.645
1.6451.282

 61.69

The following graph shows the OC curve for the sampling plan:

Using MINITAB Stat Power and Sample Size 1-Sample Z:
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Sample Size for a Two-Sided Hypothesis Test

of the Population Mean ( x known)
Conditions:
 x is known
 x is normally distributed.

Hypotheses: H0 :   0 vs. HA :   0 or alternatively, H0 :   0 vs. HA :   0 where
  |0  |.
Sample Size: The sample size required to reject H0 :   0 with probability P  1   for a shift
from   0 to   0   is given by:

n 
z/2z x



2

where z/2 and z are both positive.
Example: Determine the sample size required to detect a shift from   30 to   30  2 with
probability P  0. 90. Use   0. 05. The population standard deviation is x  1. 8 and the distribution
of x is .
Solution: The hypotheses being tested are H0 :   30 vs. HA :   30. The size of the shift that we
want to detect is   2 and we have   1. 8. Since z/2  z0.025  1. 96 and z  z0.10  1. 28 the
sample size required for the test is:

n 
z/2z x



2

 1.961.281.8
2

2

 8. 5  9

Using MINITAB Stat Power and Sample Size 1-Sample Z:
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Sample Size for Hypothesis Tests for the Difference

Between Two Population Means
Conditions:
 1 and 2 are both known and 1  2

 x1 and x2 are normally distributed
Hypotheses: H0 : 1  2 vs. HA : 1  2 or alternatively, H0 :   0 vs. HA :   0 where
  |1  2 |.
Sample Size: The sample size required to reject H0 with probability P  1   for a difference
between the means of |1  2 |   is given by:

n1  n2  2
z/2  z x



2

where z/2 and z are both positive. For the one-sided tests replace z/2 with z.

¹¹

-z z0

x
z

Accept H

Accept H

0 1
-z 0

x
z

 

0

0



0



 



Example: Determine the common sample sizes required to detect a difference between two
population means of |1  2 |    8 with probability P  0. 95. Use   0. 01. The population
standard deviation is x  6. 2 and the distribution of x is .
Solution: The hypotheses to be tested are H0 :   0 vs. HA :   0. We want to detect a difference
between the two means of   8 with probability P  0. 95 so we have   1  P  0. 05 so
z  z0.05  1. 645. For the two-tailed test we need z/2  z0.005  2. 575 so the required sample size is:

n1  n2  2
z/2z x



2

 2 2.5751.6456.2
8

2

 21.4  22

Using MINITAB Stat Power and Sample Size 2-Sample t:
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Chapter 4: The Language of DOE

Input-Process-Output Diagrams
Use an input-process-output (IPO) diagram to catalog all of the possible input and output variables of
a process:

Process

PIV

PIV
PIV

PIV

POV

POV

POV

POV

POV

POV

PIV

Process Input Variables (PIV)                 Process Output Variables (POV)

The goal is to manage the KPIVs so that all of the requirements of the CTQs and KPOVs are
satisfied:

Process

PIV

PIV

PIV KPIV

PIV

PIV

PIV

KPIV

KPIV

KPIV
POV

POV

POV

POV

POV

POV

POV

POV

KPOV

KPOV

KPOV

CTQ

CTQ

CTQ

CTQ

KPIV = Key Process Input Variable
KPOV = Key Process Output Variable
CTQ = Critical To Quality

Process Input Variables (PIV)                 Process Output Variables (POV)

"The novice sees many possibilities. The expert sees few." - Shunryu Suzuki
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Disposition of Design Variables in an Experiment

Variable Types
 Quantitative variables

 Require a valid measurement scale
 Qualitative variables

 Fixed: All levels are known and identified.
 Random: Levels are random sample of many possible levels.

 We will limit our considerations to quantitative response variables.
 Design (i.e. input) variables will be both qualitative and quantitative.

Why Is DOE Necessary?
DOE allows the simultaneous investigation of the effect of several variables on a response in a cost
effective manner. DOE is superior to the traditional one-variable-at-a-time method (OVAT).
Example: Find the values of x1 and x2 that maximize the response by the OVAT method. OVAT fails
in the second case because there is an interaction between variables A and B that the OVAT method
cannot resolve.

100

75

50

25

0

A

Y1

-1 1

-1
1

B

100

75

50

25

0

A

Y2

1-1

-1
1

B

1

2

3

1

2

3
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Types of Experiments
 Screening Experiments

 Good first experiment
 Can consider many variables
 Pareto mode: Identify the few important variables among the many
 Usually only two levels of each variable
 Relatively few runs
 Limited if any ability to identify interactions
 Risky

 Factorial and Response Surface Experiments
 Good follow-up experiment to a screening experiment
 Fewer variables - generally the most important ones
 Often three or more levels of each variable
 Provide a more complex model for the process
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Relationship Between the Familes of Design Experiments
 Projects or programs to study a complicated process usually require more than one

experiment:
 a series of sequential experiments (see below)
 iterative experiments to clarify missed variables, poor variable level choices,

procedural errors, and other oversights
 A procedure for sequential experiments - progressing from simple to complex models:

1. Start from the present understanding of the process.
2. Screening experiment - Distinguish which of many variables are the most important:

y  b0  b1x1  b2x2 

3. Factorial experiment - Quantify variable effects, two-factor interactions, and maybe
check for curvature:

y  b0  b1x1  b2x2   b12x12   bx2

4. Response surface design - Add quadratic terms to account for curvature:

y  b0  b1x1  b2x2   b12x12   b11x1
2  b22x2

2 

5. Arrive at a useful model.

Types of Models
 Model with a qualitative PIV:

 Requires that the mean of each level be specified, e.g. five levels require specification
of x 1, x 2, ..., x 5 to estimate 1, 2, ..., 5.

 Analysis is by ANOVA.
 Model with a quantitative PIV:

 Requires mathematical expression of y  fx in the form of an equation which can be
linear, quadratic, etc.

 Analysis is by regression.
 Types of models:

 First principles model - based on first principles of physics, mechanics, chemistry, ...
 Empirical - absent knowledge of a first principles model use a Taylor expansion:

y  b0  b1x1  b2x2   b12x12   b11x1
2  b22x2

2 

 Even when the form of a first principles model is unknown, first principles should still
be used to inform the empirical model.

 "All models are wrong. Some are useful." George Box

Truth

Models
Useful

Knowledge
Present

Theory 1

Theory 2

Theory 3

Experiment Theory 2.1

Time

Experiment
Theory 2.2
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What is a Model?
Data contain information and noise. A model is a concise mathematical way of describing the
information content of the data, however; any model must be associated with a corresponding error
statement that describe the noise:

Data  Model  Error Statement

When you are trying to communicate information to someone you can either give them all of the data
and let them draw their own conclusions or state a model for the data and describe the
discrepancies from the model.
The description of the errors must include: 1) the shape of the distribution of errors and 2) the size of
the errors.

Model for a Single Set of Measurement Values
Example: 5000 normally distributed observations xi have a mean x  42 and a standard deviation
of s  2. 3. Identify the data, model, and error in this situation.
Solution: The data are the 5000 observations xi. The model is x i  x. The errors are normally
distributed about x with standard deviation s  2. 3.

x1,x2, ,x5000 

x and i;0, s

Data Model Error Statement

Model for a Set of Paired x,y Quantitative Observations
Example: 200 paired observations xi,yi are collected. A line is fitted to the data and the resulting fit
is y i  80  5xi. The points are scattered randomly above and below the fitted line in a normal
distribution with a standard error of s  2. 3. Identify the data, model, and error in this situation.
Solution: The data are the 200 observations xi,yi. The model is y i  80  5xi. The errors are
normally distributed about the fitted line with standard deviation s  2. 3.

x1,y1 , x2,y2 , , x200, y200  80  5xi and i; 0, 2. 3

Data Model Error Statement

Model for a One-way Classification
Example: Forty measurements are taken from five different lots of material. The lot means are
520,489, 515,506, and 496. The errors within the lots are normally distributed with a standard error of
20. Identify the data, the model, and the error.
Solution: The data are the 40 observations taken from 5 different populations. The model is
provided by the 5 means: 520,489, 515,506, and 496. The error statement is that the errors are
normally distributed about the lot means with a standard deviation of s  20.

x11, x12, ,x18  520

x21, x22, ,x28  489

x31, x32, ,x38  515

x41, x42, ,x48  506

x51, x52, ,x58 

496 and i;0,20

Data Model Error Statement
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Selection of Study (PIV) Variable Levels
 Variables may be qualitative or quantitative

 Each study variable must have at least two levels
 Qualitative variables, e.g. operators, material lots, ...

 Fixed levels
 Finite number of levels and all are available
 Goal is to estimate biases between levels

 Random levels
 Too many levels to include them all in the experiment
 Limited to a random sample
 Goal is to estimate the standard deviation of biases between levels

 Quantitative variables, e.g. temperature, pressure, dimension, ...
 Two levels (e.g. low and high) is sufficient to quantify main effects and two-factor

interactions
 Three or more levels are required to resolve quadratic terms
 More than three levels are required to resolve higher order terms but we usually don’t

have to go that far
 Spacing:

 Too close together and you won’t see an effect
 Too far apart and one or both levels may not work
 Too far apart and an approximately linear relationship can go quadratic or

worse

Nested Variables
 The levels of a variable are unique within one level of another variable.
 Examples:

 Operators within shifts
 Heads within machines
 Cavities within a multi-cavity mold
 Subsamples from samples from cups from totes from lots from a large production run

of a dry powder

Split Plots
 The name comes from agricultural experiments, where different hard-to-change treatments

were applied to large areas of a field (plots) and different easy-to-change treatments were
applied to smaller areas within plots (sub- or split-plots).

 A split-plot design is a hybrid or cross of two experiment designs, one design involving
hard-to-change (HTC) variables and a second design involving easy-to-change (ETC)
variables.

Whole Plots

Plots
Split-
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What is an Experiment Design?
 The variables matrix defines the levels of the design variables:

Level x1:Batch Size x2:Resin x3:Mixing Time

- 50cc A 1 minute

 150cc B 3 minutes

 The experiment design matrix defines the combination of levels used in the experiment:

Run x1:Batch Size x2:Resin x3:Mixing Time

1 - - -

2 - - 

3 -  -

4 -  

5  - -

6  - 

7   -

8   

This experiment design is called a 23 design because there are three variables, each at two
levels, so there are 23  8 unique experimental runs.

x1

x2

x3

-1-1

-1

1

1

1

2  factorial design3

 The purpose of breaking the experiment design up into two matrices, the variables matrix and
the design matrix, is to distinguish between the sources of expertise required to produce
them. The variables matrix requires substantial information that can only come from the
process owner whereas the design matrix can be chosen by anyone skilled in DOE methods.
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Most Experiments Use Just a Few Designs

Other Issues
 Extra and Missing Runs - Avoid building extra runs or losing runs from the experiment. Extra

and missing runs unbalance the experiment design and cause undesireable correlations
between terms in the model that compromise its integrity. Methods to deal with such problems
will be addressed later.

 Randomization - If claims are to be made about differences between the levels of a variable,
then the run order of the levels in the experiment must be randomized. Randomization
protects against the effects of unidentified or "lurking" variables.

 Blocking - If the run order of the levels of a variable is not randomized then that variable is a
blocking variable. This is useful for isolating variation between blocks but claims can not be
made about the true cause of differences between the blocks. Variation due to uncontrolled
sources should be homogeneous within blocks but can be heterogeneous between
blocks.

 Repetition - Consecutive observations made under the same experimental conditions.
Repetitions are usually averaged and treated as a single observation so they are oftern of
negligible value.

 Replication - Experimental runs made under the same settings of the study variables but at
different times. Replicates carry more information than repetitions. The number of replicates
is an important factor in determining the sensitivity of the experiment.

 Confounding - Two design variables are confounded if they predict each other, i.e. if their
values are locked together in some fixed pattern. The effects of confounded variables cannot
be separated. Confounding should be avoided (best practice) or managed (a compromise).
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Case Study
(http://youth.net/nsrc/sci/sci059.html, with permission from John Strang.) A student performed a
science fair project to study the distance that golf balls traveled as a function of golf ball temperature.
To standardize the process of hitting the golf balls, he built a machine to hit balls using a five iron, a
clay pigeon launcher, a piece of plywood, two sawhorses, and some duct tape. The experiment was
performed using three sets of six Maxfli golf balls. One set of golf balls was placed in hot water held
at 66C for 10 minutes just before they were hit, another set was stored in a freezer at 12C overnight,
and the last set was held at ambient temperature (23C). The distances in yards that the golf balls
traveled are shown in the table below but the order used to collect the observations was not
reported. Create dotplots of the data and interpret the differences between the three treatment
means assuming that the order of the observations was random. How does your interpretation
change if the observations were collected in the order shown - all of the hot trials, all of the cold
trials, and finally all of the ambient temperature trials?

Trial

Temp 1 2 3 4 5 6

66C 31.50 32. 10 32. 18 32. 63 32. 70 32.00

12C 32.70 32. 78 33. 53 33. 98 34. 64 34.50

23C 33.98 34. 65 34. 98 35. 30 36. 53 38.20

38.437.436.435.434.433.432.431.4

Distance (yards)

Temp

Hot

Cold

Normal

Golf Ball Distance vs. Temperature

General Procedure for Experimentation
The following 11 step procedure outlines all of the steps involved in planning, executing, analyzing,
and reporting an experiment ...
1. Prepare a cause and effect analysis of all of the process inputs (variables) and outputs (responses).

2. Document the process using written procedures or flow charts.

3. Write a detailed problem statement.

4. Perform preliminary experimentation.

5. Design the experiment.

6. Determine the number of replicates and the blocking and randomization plans.

7. Run the experiment.

8. Perform the statistical analysis of the experimental data.

9. Interpret the statistical analysis.

10. Perform a confirmation experiment.

11. Report the results of the experiment.
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General Procedure for Experimentation
1. Input-Process-Output (IPO) Diagram

a. Catalog all of the input variables: methods, manpower, machines, material, and
environment.

b. Catalog all of the possible responses.
c. Make the catalogs exhaustive!
d. Brainstorm everything.
e. Reevaluate and revise this list regularly!

2. Document the Process to be Studied
a. Review or cite the theory of the process.
b. Review the process flow charts and written procedures.
c. Review calibration and gage error study results for all measurement variables

(inputs and outputs).
d. Review process capability studies, SPC charts, and process logs.
e. Identify workmanship examples.
f. Talk to the operators or technicians who do the work.
g. Identify training opportunities.
h. Get general agreement on all steps of the process.

3. Write a Detailed Problem Statement or Protocol Document
a. Identify the response(s) to be studied.
b. Identify the design variables.

i. Variables for active experimentation.
ii. Variables to be held fixed.
iii. Variables that cannot be controlled.

c. Identify possible interactions between variables.
d. Estimate the repeatability and reproducibility.
e. Cite evidence of gage capability.
f. Cite evidence that the process is in control.
g. Identify assumptions.
h. State the goals and limitations of the experiment.
i. Estimate the time and materials required.
j. Identify knowledge gaps.

4. Preliminary Experimentation
a. Used to resolve knowledge gaps.
b. Determine nature of and levels for input variables:

i. Quantitative or qualitative?
ii. Fixed or random?
iii. Too narrow and you won’t see an effect.
iv. Too wide and you may lose runs or get curvature.

c. Use no more then 15% of your resources.
d. Refine the experimental procedure.
e. Confirm that the process is in control.
f. Confirm that all equipment is operating correctly and has been maintained.
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5. Design the Experiment
a. Assumption: The intended model and analysis method for y  fx1,x2, are

known.
b. Select an experiment design:

i. Screening experiment.
ii. Experiment to resolve main effects and interactions.
iii. Response surface experiments.

c. Consider opportunities to add a variable.
d. Identify and evaluate the merits of alternative designs.
e. Plan to use no more than about 70% of your resources.

6. Replicates, Randomization, and Blocking
a. Determine the number of replicates.
b. Build large experiments in blocks.
c. You MUST randomize. Failure to randomize may lead to incorrect conclusions

and leaves your claims open to challenge.
d. Randomize study variables within blocks.
e. Validate your randomization plan.
f. Design data collection forms.

7. Conduct the Experiment
a. Make sure all critical personnel, materials, and equipment are available and

functional.
b. Record all of the data.
c. Note any special occurrences.
d. If things go wrong decide whether to postpone the experiment or whether to

revise the experiment design and/or procedure.
8. Analyze the Data

a. Confirm the accuracy of the data.
b. Graph the data.
c. Run the ANOVA or regression.
d. Check assumptions:

i. Orthogonality
ii. Equality of variances
iii. Normality of residuals
iv. Independence
v. Check for lack of fit

e. Refine the model using Occam’s Razor.
f. Determine the model standard error and R-squared.
g. Consider alternative models.

9. Interpret the Results
a. Develop a predictive model for the response.
b. Does the model make sense?
c. Select the optimum variable levels.
d. Don’t extrapolate outside the range of experimentation.
e. Plan a follow-up experiment to resolve ambiguities.

10. Perform a Confirmation Experiment
a. Validate the model by showing that you can achieve the same result again.
b. Use the remaining 10% of your resources.
c. Don’t report any results until after the confirmation experiment is complete.

11. Document the Results
a. Keep all of the original records and notes.
b. Write the formal report.
c. Know your audience.
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Who Is Involved? What Are Their Responsibilities?
Project Design Process Manager/ Statistical

Activity Leader Operators Technicians Engineer Engineer Customer Specialist

1. Cause and Effect Analysis      

2. Document the Process     

3. Problem Statement  Review Review Review Review Review Review

4. Preliminary Experiment     

5. Design the Experiment  Support

6. Randomization Plan  Support

7. Run the Experiment     

8. Analyze the Data  Support

9. Interpret the Model  Support

10. Confirmation Experiment   

11. Report the Results  Review Review Review

Organization Culture and Infrastructure for Experiments
 Organizations must develop the culture and infrastructure necessary to run successful

programs of experiments.
 Some companies/ogranizations have a mature environment for adminstrating experiments

that permits a relatively informal experiment management system.
 Other companies/organizations may demand (by choice) or require (highly regulated industry,

contract research lab, consulting, SBIR or STTR grant application, etc.) a more structured
approach. The key document in the planning and execution of an experiment it this
environment is the experiment protocol document.

 Components of an Experiment Protocol
 Administrative Information: title, author, date, etc.
 Introduction
 Experiment design
 Sample size, blocking, randomization plan
 Experimental procedure
 Data recording
 Statistical analysis
 Report format
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Why Experiments Go Bad
 “An expert is a person who has made all the mistakes that can be made in a very narrow

field." - Niels Bohr
 "The 9/11 Commission identified four types of systemic failures ..., failures of policy,

capabilities, and management. The most important category of failure was failure of
imagination." - Nate Silver, The Signal and the Noise

 There are known knowns; there are things that we know we know. We also know that there
are known unknowns; that is to say, we know there are some things that we do not know. But
there are also unknown unknowns; there are things we do not know we don’t know." - Donald
Rumsfeld
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Why Experiments Go Bad
 Inexperienced experimenter

 The presence of the experimenter changes the process

 Failure to identify an important variable

 Picked the wrong variables for the experiment

 Failure to hold a known variable fixed

 Failure to record the value of a known but uncontrollable variable

 Poor understanding of the process and procedures

 Failure to consult the operators and technicians

 Failure to anticipate or plan for significant effect, e.g. interaction or quadratic term

 Failure to recognize all of the responses

 Inadequate R&R to measure the response

 Inadequate R&R for a quantitative predictor

 Failure to account for noise in a predictor intended to have fixed levels

 Used incorrect variable level

 Failure to do any or enough preliminary experimentation

 Exhausted resources and patience with too much preliminary experimentation

 Picked variable levels too close together

 Picked variable levels too far apart

 Wrong experiment design

 One experiment instead of several smaller ones

 Several small experiments instead of a single larger one

 Not enough replicates

 Repetitions instead of replicates

 Failure to randomize

 Randomization plan ignored by those running the experiment

 Failure to record the actual run order

 Failure to block the experiment to control the effects of lurking variables

 Failure to run controls

 Critical person missing when experiment is run

 Failure to record all of the data

 Failure to maintain part identity

 Unanticipated process change during experiment

 Equipment not properly maintained

 Failure to complete the experiment in the allotted time (e.g. before a shift change)

 Failure to note special occurrences

 Wrong statistical analysis

 Failure to check assumptions (normality, equality of variances, lack of fit, ...)

 Failure to specify the model correctly in the analysis software

 Mistreatment of lost experimental runs

 Failure to refine the model

 Misinterpretation of results

 Extrapolation outside of experimental boundaries

 Failure to perform a confirmation experiment

 Inadequate resources to build a confirmation experiment

 Inadequate documentation of the results

 Inappropriate presentation of the results for the audience
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Chapter 5: Experiments for One-way Classifications

The Purpose of ANOVA
 The purpose of ANOVA is to determine if one or more pairs of treatment means among three

or more treatments are different from the others:

H0 : i  j for all possible pairs

HA : i  j for at least one pair

 ANOVA doesn’t indicate which pairs of means are different, so follow-up multiple comparison
test (MCT) methods are used after ANOVA.

The Graphical Approach to ANOVA
If H0 is true, then y  y/ n :

If H0 is false, then y  y/ n :
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The Key to ANOVA is an F Test
The ANOVA F test compares two independent estimates of the population variance determined from
the variation between treatments y

2
and the variation within treatments 

2
. If H0 :  i   j for

all i, j is true, then by the central limit theorem y
2  ny

2 so

F 
y

2

y
2


nsy2

s2

follows the F distribution. When H0 is true, then EF  1. When H0 : i  j is not true then
EF  1.

F
1 2.640

Ho

Ha

ANOVA Assumptions
ANOVA requires that the following assumptions are met:
 The k populations being sampled are normally distributed.
 The k populations being sampled have equal variances, i.e. are homoscedastic.
 The observations are independent.

Test these assumptions with residuals diagnostic plots:
 Normal probability plot of the residuals.
 Plot of the residuals vs. treatments.
 Plot of the residuals vs. the predicted values.
 Plot of the residuals vs. the run order.
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ANOVA Assumptions
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ANOVA Sums of Squares
ANOVA separates the total variation in the data set into components attributed to different sources.
The total amount of variation in the data set is:

SStotal
j1

k


i1

n

yij  y2

If the k treatment means are y 1, y 2, ..., y k, that is:

y j
1
n 

i1

n

y ij

then

SStotal  
j1

k


i1

n

yij  y j  y j  y2

 
j1

k


i1

n

yij  y j
2  n

j1

k

y j  y2

 SS  SStreatment

The degrees of freedom are also partitioned:

df total  dftreatment  df

kn  1  k  1  kn  1

The required variances, also called mean squares MS, are given by:

MS  s2 
SS
df

and MS treatment  nsy2 
SStreatment

dftreatment
so

F 
nsy2

s2
 MS treatment

MS
The statistic F follows an F distribution with dfnumerator  k  1 and dfdenominator  kn  1. If H0 : i  j

is true then EF  1. If H0 is false then EF  1. We accept or reject H0 on the basis of where F
falls with respect to F.
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Total Variation: SStotal   j1
k  i1

n
y ij  y2

Error Variation: SS   j1
k  i1

n
y ij  y j

2

Variation Between Treatments: SS treatment  n j1
k
y j  y2
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The ANOVA Table

Source df SS MS F

Treatment A k  1 SSA SSA/dfA MSA/MS

Error kn  1 SS SS/df

Total kn  1 SStotal

ANOVA Summary Statistics
 Standard error of the model:

s  MS  SS
df




j1

k


i1

n

yij  y j
2

kn  1

 Coefficient of determination:

r2  SStreatment

SStotal
 1  SS

SStotal

 Adjusted coefficient of determination:

radj
2  1  dftotal

df
SS
SS total

Randomization
For an experiment to compare three processes (A, B, and C), what run order (1, 2, 3, or 4) should be
used to collect the data?

Method Run Order

1 AAAAAABBBBBBCCCCCC

2 AAABBBCCCAAABBBCCC

3 BBBAAABBBCCCAAACCC

4 CBCAABCCCABBAABCAB

 What if an unobserved lurking variable that affects the response changes during the
experiment?

L 111112222233333333

 The ANOVA to test for differences between A, B, and C does not depend on or account for
the run order ...

 However, the interpretation of the results does.
 Conclude that it is essential to randomize the run order.
 Method #4 is called the completely randomized design (CRD)
 If you do not randomize the run order your interpretation of the ANOVA may be incorrect and

is open to challenge.
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Post-ANOVA Pairwise Tests of Means
Although ANOVA indicates if there are significant differences between treatment means, it does not
identify which pairs are different. Special pairwise testing methods are used after ANOVA:
 Two-sample t tests are too risky because of compounded testing errors
 95% confidence intervals
 Bonferroni’s method - reduce  by the number of tests n, i.e.    /n
 Sidak’s Method - less conservative than Bonferroni’s method
 Duncan’s Multiple Range Test - very sensitive, but a bit tedious
 Tukey’s Method (Tukey-Kramer or Tukey HSD) - popular
 Dunnett’s Method - for comparison to a control
 Hsu’s Method - for comparison against the best (highest or lowest) among the available

treatments

One-Way ANOVA in MINITAB
 Use Stat ANOVA One-way if the response is in a single column (i.e. stacked) with an

associated ID column.
 Use Stat ANOVA One-way (Unstacked) if each treatment is in its own column.
 In the Graphs menu:

 Histogram and normal plot of the residuals.
 Residuals vs. fits.
 Residuals vs. order.
 Residuals vs. the independent variable.

 In the Comparisons menu
 Tukey’s method for all possible comparisons while controlling the family error rate.
 Fisher’s method with a specified  (e.g. Bonferroni correction) for a specific subset of

all possible tests.
 Dunnett’s method for comparison against a control.
 Hsu’s method for comparison against the best (highest or lowest) of the treatments.

One-way ANOVA in NCSS
Use Analysis ANOVA One-way ANOVA:
 On the Variables tab:

 Set the Response Variable
 Set the Factor Variable

 On the Reports tab turn on the:
 Assumptions Report
 ANOVA Report
 Means Report
 Means Plot
 Box Plots
 Tukey-Kramer Test
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Response Transformations
If the ANOVA assumptions of homoscedasticity and/or normality of the residuals are not satisifed
then it might be possible to transform the values of the response so that the assumptions are
satisfied. In general, transformations take the form y  fy such as:
 y  y

 y  lny or y  logy
 y  y2

 y  y where  is chosen to make y as normal as possible (Box-Cox transform)
 y  ey or y  10y

 For count data: y  y

 For proportions: p  arcsin p

 If a suitable transform cannot be found but the residuals are non-normal but identically
distributed (i.e. homoscedastic and same shape) then use the Kruskal-Wallis method by
replacing the response with the ranked response, that is:

y  ranky

Transformations in MINITAB
 Perform transformations from the Calc Calculator menu or use the let command at the

command prompt. For example:

mtb let c3  sqrt(c2)

Transformations in NCSS
 Enter the transformation in the Transformation column of the Variable Info tab, e.g. sqrtc1.

Then select Data Recalc All or click the calculator icon to apply the transformation.

Sample Size Calculation for One-way ANOVA
There is an exact calculation of the sample size for the ANOVA’s F test presented in the text book;
however, a simple and approximate sample size for a one-way classification design can be obtained
by applying a Bonferroni correction to the type 1 error rate  for the two-sample t test.
 Recall from Chapter 3 that the sample size n per treatment group for the two-sample t test is

given by:

n  2
t/2  t x



2

where  is the effect size   1  2  with associated power/probability P  1   where  is
the type 2 error rate and  is the type 1 error rate.

 In a one-way classification design with k treatments there will be k
2

multiple comparisons
tests. By Bonferroni’s method: To limit the family error rate to  family the type 1 error rate for
each test must be

  
 family

k
2


2 family

kk  1

and the sample size per treatment group must be

n  2
t /2  tx



2

Design of Experiments, Copyright © 1999-2022 Paul Mathews 68



Chapter 6: Experiments for Multi-way Classifications

Two Way Classification Problem
There are a levels of the first variable A (in columns) and b levels of the second B (in rows):

A

yij 1 2 3  a

1 y11 y21 y31  ya1

2 y12 y22 y32  ya2

B 3 y13 y23 y33  ya3

     

b y1b y2b y3b  yab

The model we will apply is:

yij     i  j  ij
where the  i quantify the differences between the columns and the j quantify the differences
between the rows.

Two-way ANOVA Hypotheses
The hypotheses to be tested are:

H0 :  i  0 for all of the i

HA :  i  0 for at least one of the i

H0 : j  0 for all of the j

HA : j  0 for at least one of the j

This will require two separate tests from the same two-way classified data set.

The Variable Effects
Analogous to the one-way ANOVA:

s2 
 i1

a  i2

a  1
and

s2 


j1
b  j2

b  1
The error variance calculated from the ij :

s2 
 i1

a  j1
b ij2

a  1b  1

where

ij  yij     i  j
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Tests for Variable Effects
By ANOVA:

FA 
bs2

serror2

with a  1 and a  1b  1 degrees of freedom for the numerator and denominator, respectively.

FB 
as

2

serror2

with b  1 and a  1b  1 degrees of freedom for the numerator and denominator, respectively.

Example
For the following two-way classification problem determine the row and column effects and use them
to determine the row and column F ratios. Are they significant at   0. 01? There are four levels of
the column variable A and three levels of the row variable B.

A

yij 1 2 3 4

1 18 42 34 46

B 2 16 40 30 42

3 11 35 29 41

Solution: The row and column means are:

A

yij 1 2 3 4 Mean

1 18 42 34 46 y 1  35

B 2 16 40 30 42 y 2  32

3 11 35 29 41 y 3  29

Mean y 1  15 y 2  39 y 3  31 y 4  43 y  32

The row and column effects,  i and j, respectively, are the differences between the row and column
means and the grand mean:

A

yij 1 2 3 4 Mean

 j

1 18 42 34 46 y 1  35

1  3

B 2 16 40 30 42 y 2  32

2  0

3 11 35 29 41 y 3  29

3  3

Mean y 1  15 y 2  39 y 3  31 y 4  43 y  32   0
 i

1  17 2  7 3  1 4  11   0

Notice that the mean column and row effects are   0 and   0 as required.
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The effect variances are given by:

s2  1
a1  i1

a  i2

 1
41 172  72  12  112

 153.3

and

s
2  1

b1  j1
b  j2

 1
31 32  02  32

 9. 0

The matrix of errors is:

A

ij 1 2 3 4

1 0 0 0 0

B 2 1 1 -1 -1

3 -1 -1 1 1

Notice that the row and column sums add up to 0 as required.
The error variance is given by:

serror2  1
a1b1


i1
a 

j1
b ij2

 1
4131

02  02    12

 1. 33

Finally the F ratio for the A effect is:

FA  bs2

serror2

 3153.3
1.33

 460
1.33

 346

and the F ratio for the B effect is:

FB 
as

2

serror2

 49.0
1.33

 36
1.33

 27. 1
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The ANOVA Table (One Replicate)

Source df SS MS F

A a  1 SSA MSA MSA/MS

B b  1 SSB MSB MSB/MS

Error a  1b  1 SS MS

Total ab  1 SStotal

Multi-way ANOVA in MINITAB
 Use Stat ANOVA Two-Way for two-way classifications.
 Use Stat ANOVA Balanced ANOVA for balanced multi-way classifications.
 Use Stat ANOVA General Linear Model for almost everything.

 Select residuals diagnostic graphs from the Graphs menu.
 Select an appropriate post-ANOVA comparisons method from the Comparisons

menu.
 Be careful how you interpret the F statistics!

Multi-way ANOVA in NCSS
Analysis ANOVA Analysis of Variance
 On the Variables Tab:

 Set the Response Variable
 Set the Factor 1, 2, ..., Variables

 On the Reports Tab:
 ANOVA Report
 Means Report
 Means Plots
 Tukey-Kramer Test
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Blocking
Suppose that we want to test three different processes A, B, and C for possible differences between
their means but we know there is lots of noise so we will have to take several observations from
each process. Which of the following run orders should be used to collect the data?

Method Run Order

1 AAAAAABBBBBBCCCCCC

2 AAABBBCCCAAABBBCCC

3 BBBAAABBBCCCAAACCC

4 CBCAABCCCABBAABCAB

What if the process is unstable and drifts significantly over the time period required to collect the
data? If this drift is not handled correctly it may hide significant differences between the three
processes or its effect might be misattributed to differences between the three processes.
The solution is to build the experiment in blocks which can be used to remove the effect of the drift.
Such designs are called randomized block designs (RBD).

Method Run Order (Blocked)

5 ABACCACBB | CBAAACBBC

6 BCCAAB | CABABC | ABCACB

7 BCA | ACB | CAB | BAC | CBA | ABC

The two-way ANOVA will test for differences between A, B, and C while controlling for differences
between blocks so conditions should be homogeneous within blocks but may be heterogeneous
between blocks. There are many opportunities to improve experiments with the use of blocking to
control unavoidable sources of variation.
The following table shows how the degrees of freedom will be allocated in the various models:

Method

4 5 6 7

Block 0 1 2 5

Treatment 2 2 2 2

Error 15 14 13 10

Total 17 17 17 17
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Interactions
When two variables interact then the effect of one variable depends on the level of the other. In case
a) below A and B do not interact. In case b) below A and B do interact. In general, in such plots (often
called interaction plots), parallel line segments over all vertical slices in the plot indicate no
interaction and divergent line segments over some or all vertical slices in the plot indicate interaction.

To be capable of detecting an interaction a two-way factorial experiment requires two or more
replicates of the a  b design.

The ANOVA Table with Interaction
In an a  b factorial experiment with n replicates:

Source df SS MS F

A a  1 SSA MSA MSA/MS

B b  1 SSB MSB MSB/MS

AB a  1b  1 SSAB MSAB MSAB/MS

Error abn  1 SS MS

Total nab  1 SS total
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Higher Order Interactions
When there are more than two variables then three-factor, four-factor, and higher order interactions
are possible. In most engineering technologies three-factor and higher order interactions are rare
and it is safe to ignore them. In some technologies (like psychology) high order interactions can be
very important.

ANOVA for the Three-way Classification Design
In an a  b  c factorial experiment with n replicates:

Source df SS MS F

A a  1 SSA MSA MSA/MS

B b  1 SSB MSB MSB/MS

C c  1 SSC MSC MSC/MS

AB a  1b  1 SSAB MSAB MSAB/MS

AC a  1c  1 SSAC MSAC MSAC/MS

BC b  1c  1 SSBC MSBC MSBC/MS

ABC a  1b  1c  1 SSABC MSABC MSABC/MS

Error abcn  1 SS MS

Total nabc  1 SStotal

The df and SS associated with any insignificant terms that are omitted or dropped from the model are
pooled with df and SS, respectively. When insignificant terms are dropped from the model, they
must be managed to preserve the hierarchy of the remaining terms in the model. For example, in
order to retain the BCE three-factor interaction in the model it’s necessary to retain B, C, E, BC, BE,
and CE even if they are not all statistically significant.

Sample Size Calculations
 In a two-way or multi-way classification design, if the experiment must be able to resolve a

specified effect size with specified power between pairs of levels for all of the study variables,
then the variable with the largest number of levels will be the limiting case because it will have
the fewest observations in each of its levels. The power for the other variables with fewer
levels will be greater than the specified power because they will have more observations per
level.

 Sample size calculations for two-way and multi-way classification designs:
 Are closely related in method and result to the sample size calculations for one-way

classification designs and two-sample t tests so can be approximated by those
methods.

 Can be performed exactly for ANOVA F tests using MINITAB Stat Power and
Sample Size General Full Factorial Design.
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Sample Size Calculations
Example: Determine the number of replicates required for a 5  3  2 full factorial experiment if the
experiment must be capable of detecting an effect of size   2 with 90% power. The standard error
is expected to be   1. 4.
Solution 1: Using Stat Power and Sample Size General Full Factorial Design the experiment
will require three replicates and the power to detect the effect of size   2 will be 92.8% for the
five-level variable. The total number of runs required for the experiment will be 5  3  2  3  90.

Solution 2: Using Stat Power and Sample Size One-way ANOVA for the five level variable the
experiment will require 5  17  85 runs - in good agreement with the 90 runs calculated in the first
solution.

Solution 3: Using Stat Power and Sample Size Two-sample t applied to the five-level variable
with a Bonferroni correction for 5

2  10 tests (i.e.    0. 05/10  0. 005) gives an experiment with
19 observations per group or 5  19  95 total observations. The sample size is a bit larger than the
others because the Bonferroni correction is conservative.
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Chapter 7: Advanced ANOVA Topics

Balanced Incomplete Factorial Designs
 Full-factorial designs include all possible permutations of all levels of the design variables.
 Full-factorial designs can resolve main effects, two-factor interactions, and higher order

interactions.
 Balanced incomplete factorial designs omit some of the runs from the full-factorial design to

decrease the number of runs required for the experiment.
 The runs are omitted uniformly to preserve the balance of the experiment, i.e. all levels of

each variable are equally represented.
 Balanced incomplete factorial designs can only resolve main effects and their accuracy

depends on the assumption that there are no significant two-factor and higher order
interactions.

Example: Consider the 3  3 balanced incomplete factorial design:

A

1 2 3

1   

B 2   

3   

Latin Squares
 Latin squares are balanced incomplete designs with three variables.
 All variables have the same number of levels n  3, 4, . . . but only 1/n of the possible runs from

the full-factorial design are used.
 Can only resolve main effects and assume (rightly or not) that there are no significant

interactions.
 Usually employed as a blocking design to study one variable C and block two others A and

B.
Example: Consider the 3  3 Latin Square design:

B

B1 B2 B3

A1 C2 C3 C1

A A2 C3 C1 C2

A3 C1 C2 C3
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Fixed and Random Variables
 Suppose that we need to do an experiment to study biases between operators for a critical

measurement.
 If there only a few operators who are qualified to make the measurement and all of the

operators can be included in the study, then it makes sense to test for biases between
operators:

H0 : i  j for all possible i, j

HA : i  j for at least one i, j pair

If there are significant biases between operators, then future measurements could be
corrected by removing the known biases. In this case the qualitative variable Operator
is called a fixed variable, factor, or effect.

 If there are many operators - too many to include all of them in the study - then only a
random sample of the operators can be included in the study. In this case it makes
sense to test the standard deviation of biases between operators:

H0 : Operator  0

HA : Operator  0

If the standard deviation of biases between operators is non-zero and practically large,
then the measurements will be contaminated by noise from the operators and it may
be necessary to take action to reduce operator biases, such as by training the
operators or by replacing the instrument with one that is less sensitive to how it is
used. In this case the qualitative variable Operator is called a random variable, factor,
or effect.

 The analysis of a qualitative variable as fixed or random affects the ANOVA, i.e. the ANOVA
results obtained by treating a variable as fixed or random are different, so it is essential that
the fixed or random nature of a variable be specified correctly before running the ANOVA.
 The choice to treat a variable as fixed or random comes down to the action taken if the

effect is statistically and practically significant:
 If you can act on the individual differences then the variable is fixed, e.g.

"recalibrating" a single operator
 If you have to act on the whole population then the variable is random, e.g.

retraining all of the operators
 Fixed and Random Variables in MINITAB:

 In MINITAB’s Stat ANOVA General Linear Model Fit General Linear Model
menu MINITAB assumes that a qualitative variable is a fixed factor. To change a
variable’s fixed status to random open the Random/Nest submenu and in the Factor
type: table choose the appropriate setting, Fixed or Random, from the list box.

 By default MINITAB doesn’t report the standard deviations of the random effects. To
obtain that report, open the Results submenu and check the checkbox next to
Variance components.
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Analysis of Fixed and Random Variables
 If A is fixed and B is fixed:

Source df EMS F

A a  1 
2  bn

a1  i1
a  i

2 MSA
MS

B b  1 
2  an

b1  j1
b j

2 MSB
MS

AB a  1b  1 
2  n

a1b1
 i1

a  j1
b ij

2 MSAB
MS

Error abn  1 
2

Total abn  1

Analysis of Fixed and Random Variables
 If A is fixed and B is random:

Source df EMS F

A a  1 
2  nAB

2  bn
a1  i1

a  i
2 MSA

MSAB

B b  1 
2  nAB

2  anB
2 MSB

MSAB

AB a  1b  1 
2  nAB

2 MSAB
MS

Error abn  1 
2

Total abn  1

Analysis of Fixed and Random Variables
 If A is random and B is random:

Source df EMS F

A a  1 
2  nAB

2  bnA
2 MSA

MSAB

B b  1 
2  nAB

2  anB
2 MSB

MSAB

AB a  1b  1 
2  nAB

2 MSAB
MS

Error abn  1 
2

Total abn  1
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Gage Error Studies
 Measurement accuracy is established by calibration.
 Measurement precision is quantified in a designed experiment called a gage error study

(GR&R study). The purpose of the GR&R study is to obtain estimates of the different sources
of variability in the measurement system:

Total Variation

Part Variation Measurement System Variation

Repeatability Reproducibility

Operator Operator x Part

 In a typical gage error study three or more operators measure the same ten parts two times.
 If the operators are fixed and if a difference between operators is detected we might adjust

the present and future data for operator bias or ‘calibrate’ one or more of the operators.
 If the operators are random and if Op is determined to be too large we would have to train all

of the operators, not just those who participated in the study. It would be inappropriate to take
any action against specific operators who participated in the study.

 In most gage error studies operators are assumed to be a random sample from many
possible operators. Then ANOVA can be used to partition the total observed variability in the
gage error study data into three components: part variation, operator variation
(reproducibility), and inherent measurement error (repeatability or precision):

Source df MS EMS F

OperatorO o  1 MSO 
2  npO

2 MSO
MS

PartP p  1 MSP 
2  noP

2 MSP
MS

Error opn  o  p  1 MS 
2

Total opn  1

These variances are determined using a post-ANOVA method called variance components
analysis:

 2  MS

 OP
2  MSOP MS

n

 O
2  MSO  MSOP

np

 P2  MSP MSOP
no
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 After the s are known from the variance components analysis they are used to calculate
quantities called the equipment variation EV which estimates precision and the appraiser
variation AV which estimates reproducibility from:

EV  6

AV  6Op

The 6 value comes from the normal distribution - about 99.7% of a normal distribution
should fall within 3 of the population mean which is an interval with width 6 wide.

 If both reproducibility AV and repeatability EV are less than about 10% of the tolerance
then the measurement system, consisting of the operators, instrument, and measurement
methods, is acceptable; if they are between 10% and 30% of the tolerance the measurement
system is marginal; and if they are greater than 30% the measurement system should
definitely not be used.

Sample Size in GR&R Studies
 Most GR&R study designs provide plenty of degrees of freedom for estimating repeatability

but few to estimate operator reproducibility.
 Use enough parts to challenge the operators.
 A minimum of 6-8 operators is recommended. (See Burdick, Borror, and Montgomery, Design

and Analysis of Gauge R&R Studies.)
 Each operator should measure each part twice. Three or more such trials only improve the

repeatability estimate which is already precise compared to the reproducibility estimate.

GR&R Study Example

Part-to-PartReprodRepeatGage R&R
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% Study Var
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Gage name:                         
Date of study :                         

Reported by :                         
Tolerance:                         
Misc:                         

Components of Variation

R Chart by Op

Xbar Chart by Op

Msmt by Part

Msmt by Op

 Part * Op Interaction

Gage R&R (ANOVA) for Msmt
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Total Variation    201.231         100.00
Part-To-Part       197.702          98.25
    Op*Part          0.410           0.20
    Op               1.262           0.63
  Reproducibility    1.672           0.83
  Repeatability      1.858           0.92
Total Gage R&R       3.530           1.75
Source             VarComp   (of VarComp)
                            %Contribution
 
Total          59  10859.8
Repeatability  30     55.7     1.86
Part * Op      18     48.2     2.68    1.442  0.183
Op              2     55.8    27.92   10.427  0.001
Part            9  10700.0  1188.89  443.976  0.000
Source         DF       SS       MS        F      P
 
Gage R&R Study - ANOVA Method 

Number of Distinct Categories = 10
 
 
Total Variation        14.1856    85.1136      100.00       42.56
Part-To-Part           14.0606    84.3638       99.12       42.18
    Op*Part             0.6404     3.8423        4.51        1.92
    Op                  1.1235     6.7408        7.92        3.37
  Reproducibility       1.2932     7.7590        9.12        3.88
  Repeatability         1.3629     8.1777        9.61        4.09
Total Gage R&R          1.8788    11.2728       13.24        5.64
Source             StdDev (SD)   (6 * SD)       (%SV)  (SV/Toler)
                                Study Var  %Study Var  %Tolerance
 
 
Process tolerance = 200
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Variance Components in Process Capability Studies
Each lot of incoming material is split into three parallel paths to be processed on three hopefully
identical machines. Four lots are processed each day for 40 days. The response is measured three
times for each lot, once at the beginning, middle, and end. Two samples are measured at each time
point.
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800

400

8079787776757473727170696867666564636261605958575655545352515049484746454443424140393837363534333231302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1

1200

800

400

Machine = 1

Lot

Y

Machine = 2
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1
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Time

Variance Components in Process Capability Studies
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Variance Components in Process Capability Studies

S = 59.8601   R-Sq = 80.71%   R-Sq(adj) = 79.53%

 
Total     1439  25189701
Error     1356   4858866   4858866     3583
Time         2    184803    184803    92401   25.79  0.000
Lot(Day)    60  11507119  11507119   191785   53.52  0.000
Day         19   6026897   6026897   317205    1.65  0.072
Machine      2   2612016   2612016  1306008  364.48  0.000

Source      DF    Seq SS    Adj SS   Adj MS       F      P
 
Analysis of Variance for Y, using Adjusted SS for Tests
 
 
Time      fixed        3  1, 2, 3
                          76, 77, 78, 79, 80
                          64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,

                          52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
                          40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
                          28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
                          16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
Lot(Day)  random      80  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
                          16, 17, 18, 19, 20
Day       random      20  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
Machine   fixed        3  1, 2, 3

Factor    Type    Levels  Values
 
General Linear Model: Y versus Machine, Day, Time, Lot 

All      778.7      0.0
3        793.7     15.0
2        776.2     -2.5
1        766.3    -12.4
Time      Mean     Bias

 
All      778.7      0.0
3        723.0    -55.7
2        786.7      8.0
1        826.4     47.7

Machine   Mean     Bias
 
Least Squares Means for Y
 
 

Error          3583       59.86
Lot(Day)      10456      102.26
Day            1742       41.74
Source     Variance   Deviation
          Estimated    Standard
 
Variance Components, using Adjusted SS

Sample Size for Process Capability
An approximate 1  100% confidence interval for cp is given by

Pc p1    cp 
c p1    1  

where the confidence interval’s relative half-width is

 
z/2

2n
.

Then the sample size required to obtain relative confidence interval half-width  is

n  1
2

z/2



2
.

Example: The sample size required to estimate cp with 10% precision and 95% confidence is

n  1
2

1. 96
0. 1

2
 192
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Analysis of Experiments with Fixed and Random Variables in Minitab
Use Stat ANOVA General Linear Model. Enter all variables and terms in the Model window.
Indicate the random variables in the Random window and continuous quantitative predictors as
Covariates. Turn on Display expected mean squares and variance components in the Results
window. Manually calculate the standard deviations from the variances in the MINITAB output.

Analysis of GR&R Studies in MINITAB
 MINITAB assumes that operators and parts are random per QS9000: Measurement Systems

Analysis.
 Use Stat Quality Tools Gage Study Gage R&R Study (Crossed) if all of the operators

measure all of the parts.
 Use Stat Quality Tools Gage Study Gage R&R Study (Nested) if each operator

measures only his own parts.
 Specify the part’s tolerance width in the Options Process Tolerance window and MINITAB

will report the usual relative variations.
 Complex GR&R studies that are structured according to the default crossed and nested

designs should be analyzed using Stat ANOVA General Linear Model.

Analysis of Experiments with Fixed and Random Variables in NCSS
Use Analysis ANOVA Analysis of Variance or Analysis ANOVA ANOVA GLM. Set each
variable’s attribute, fixed or random, as required. NCSS performs the appropriate ANOVA and
reports the variance components equations but does not solve them. You will have to solve them
manually.

Analysis of GR&R Studies in NCSS
Assuming that operators and parts are both random and crossed (i.e. not nested) and each operator
measures each part at least twice use Analysis Quality Control R&R Study. Given the part
specifications NCSS will make the relevant comparisons between repeatability and reproducibility to
the spec.
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Nested Variables
Some experiments involve variables that have levels that are unique within the levels of other
variables. The relationship between such variables is referred to as nesting.
Example: A dry powdered pharmaceutical product (active ingredient plus filler) is made in batches in
an industrial blender. Each batch is unloaded into four totes and then material is vacuum-transfered
into cups for packaging and distribution. An experiment was performed to study how much variability
in the active ingredient comes from differences between batches, totes, and cups. The experiment
included twenty batches, four totes per batch, and three cups were chosen at random from each tote
and assayed for the active ingredient. A schematic and the analysis of the fully nested experiment
design are shown below.

Cup    1 2 3    1 2 3    1 2 3    1 2 3           1 2 3    1 2 3    1 2 3    1 2 3
 
 
 
Tote     1        2        3        4               1        2        3        4
 
 
 
Batch                  1                    ...                  20

 Data Display  
 
Row  Batch  Tote  Cup     Msmt 
  1      1     1    1  1063.50 
  2      1     1    2  1062.87 
  3      1     1    3  1059.63 
  4      1     2    1  1054.66 
  5      1     2    2  1054.03 
  6      1     2    3  1050.79 
. 
. 
. 
234     20     2    3  1027.99 
235     20     3    1  1066.86 
236     20     3    2  1066.23 
237     20     3    3  1062.99 
238     20     4    1  1005.26 
239     20     4    2  1004.63 
240     20     4    3  1001.39 

 Nested ANOVA: Msmt versus Batch, Tote, Cup  
 
Analysis of Variance for Msmt 
 
Source   DF           SS         MS        F      P 
Batch    19  146434.9677  7707.1036    3.980  0.000 
Tote     60  116194.0506  1936.5675  448.539  0.000 
Cup     160     690.8006     4.3175 
Total   239  263319.8189 
 
 
Variance Components 
 
                    % of 
Source  Var Comp.  Total   StDev 
Batch     480.878  42.58  21.929 
Tote      644.083  57.03  25.379 
Cup         4.318   0.38   2.078 
Total    1129.279         33.605 

 

Analysis of Experiments With Nested Variables
Analyze fully nested designs in MINITAB using Stat ANOVA Fully Nested Design or Stat
ANOVA General Linear Model. For the latter method, the example’s model is specified as: Batch
Tote(Batch) Cup(Batch Tote) although the last term should be dropped to provide error
degrees of freedom for the analysis unless more than one assay is performed from each cup. The
Stat ANOVA General Linear Model method can also be used to analyze complex designs with
both crossed and nested variables.
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Split-Plot Designs
 Split-plot designs are hybrid designs that cross a matrix of hard-to-change (HTC) variables

with a matrix of easy-to-change variables (ETC) by nesting a design of the ETC variables
within the runs of a design of the HTC variables.

 Split-plots apply different plans of randomization, blocking, repetitions, and replicates to the
HTC and ETC variables.

 The levels of the hard-to-change variables are held constant within whole-plots, i.e. there is a
restriction on randomization.

 The levels of the easy-to-change variables that define the split-plots are performed using
complete randomization within each whole-plot; that is, split-plots are nested within
whole-plots.

 The whole-plot to split-plot relationship is closely related to blocking in factorial design and
repeated measures designs.

 Whole-plots and split-plots have different, independent randomization, blocking, and
replication plans.

 In the ANOVA for a split-plot design, the whole-plots and split-plots have different estimates
for the errors for calculating their F statistics. Consequently, ...

 The number of replicates for whole-plots is different from the number of replicates for
split-plots.

 Warning: Many industrial experiments that were conceived as completely randomized
factorial designs are executed as split-plot designs because of the presence of and
complications associated with changing the hard-to-change variable levels. The analysis of
an experiment executed as a split-plot but analyzed as a completely randomized factorial
design will give incorrect results.

Example: A split-plot experiment will be performed with one HTC variable and one ETC variable.
The HTC variable (A) has two levels and will use an RBD design with four replicates for eight
whole-plot runs. The whole-plot run matrix is shown below.

Whole Plot Run Matrix

Block(A) WP A(HTC)
1 2 2
1 1 1
2 3 1
2 4 2
3 5 1
3 6 2
4 7 1
4 8 2

The ETC variable (B) has three levels of each variable and will use an RBD design with two
replicates for six split-plot runs within each whole-plot. The split-plot run matrix is shown below in
standard order. The complete experiment will have 8  6  48 runs.

Split-Plot Run Matrix (Standard Order)

Block(B) B(ETC)
1 1
1 2
1 3
2 1
2 2
2 3
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Split-Plot Designs
Example: An experiment will be performed to study the shrinkage (size reduction) of sintered
ceramic parts as a function of:
 Hard-to-change / whole-plot variables (levels): Sintering temperature (2), Sintering time at

temperature (2)
 Easy-to change / split-plot variables (levels): Ceramic grain size (2), binder amount (2), mold

pressure (2)
 The experiment will have two replicates, built in blocks, of the 22 whole-plot design and four

replicates, built in blocks, of the 23 split-plot design within each whole-plot for a total of
2  22   4  23   256 runs. A schematic of one replicate of the whole-plot design and one
replicate of the split-plot design is shown below.

 Each whole-plot, consisting of one of the split-plot cubes at one of the sintering temperature
(A) by sintering time at temperature (B) combinations, will be completed before the next whole
plot is started. Per the blocking on replicates requirement, the four whole-plots within one
replicate of the 22 whole-plot design will be completed in random order before starting the
second replicate of whole-plots.
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The table below shows the randomization and blocking plan for the whole plots.
WP

RO Block WP A B
1 1 2 1 1
2 1 1 1 -1
3 1 3 -1 -1
4 1 4 -1 1

5 2 7 -1 -1
6 2 8 1 -1
7 2 5 1 1
8 2 6 -1 1
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Analysis of Split-Plot Designs
 In MINITAB use Stat DOE Factorial Create Factorial Design 2-level split-plot to

create a new split-plot design. Build the experiment and then use  Analyze Factorial
Design to run the analysis.

 To analyze split-plot designs in MINITAB that are outside of its scope, use Stat ANOVA
General Linear Model to perform the analysis. Use a column in the MINITAB worksheet to
identify the whole-plots. Specify the whole-plot column as a random variable in the model.
That column is necessary to build the error term for testing for whole-plot variable effects.

Example (from Poctner and Kowalski, How To Analyze A Split-Plot Experiment, Quality Progress,
December 2004, p. 67-74.)
An experiment was performed to study the water resistance of stained wood as a function of
pre-stain (a hard-to-change variable) and stain (an easy-to-change variable). There were two
pre-stains and four stains. Pre-stains were applied to whole 4x8 foot sheets of plywood (the whole
plots). Then each sheet of plywood was cut up into four pieces and each piece was painted with one
of the stains (the split plots). The whole-plot design is 21 which was replicated three times (6 sheets
of plywood). The split-plot design is 41 which was replicated one time within each whole-plot. The
experimental runs and responses are shown in the table below. The P column indicates pre-stain,
the S column indicates stain, and the WP column identifies the whole-plots. The analysis of the
experiment is also shown in the table. To build the correct error terms for testing for whole-plot
variable and split-plot variable effects, the model was specified as: P WP(P) S P*S and WP must
be declared a random variable.

 Row  P  S  WP     Y 
  1  2  2   4  53.5 
  2  2  4   4  32.5 
  3  2  1   4  46.6 
  4  2  3   4  35.4 
  5  2  4   5  44.6 
  6  2  1   5  52.2 
  7  2  3   5  45.9 
  8  2  2   5  48.3 
  9  1  3   1  40.8 
 10  1  1   1  43.0 
 11  1  2   1  51.8 
 12  1  4   1  45.5 
 13  1  2   2  60.9 
 14  1  4   2  55.3 
 15  1  3   2  51.1 
 16  1  1   2  57.4 
 17  2  1   6  32.1 
 18  2  4   6  30.1 
 19  2  2   6  34.4 
 20  2  3   6  32.2 
 21  1  1   3  52.8 
 22  1  3   3  51.7 
 23  1  4   3  55.3 
 24  1  2   3  59.2 

 General Linear Model: Y versus P, S, WP  
 
Factor  Type    Levels  Values 
P       fixed        2  1, 2 
WP(P)   random       6  1, 2, 3, 4, 5, 6 
S       fixed        4  1, 2, 3, 4 
 
 
Analysis of Variance for Y, using Adjusted SS for Tests 
 
Source  DF   Seq SS  Adj SS  Adj MS      F      P 
P        1   782.04  782.04  782.04   4.03  0.115 
WP(P)    4   775.36  775.36  193.84  15.25  0.000 
S        3   266.00  266.00   88.67   6.98  0.006 
P*S      3    62.79   62.79   20.93   1.65  0.231 
Error   12   152.52  152.52   12.71 
Total   23  2038.72 
 
 
S = 3.56509   R-Sq = 92.52%   R-Sq(adj) = 85.66% 
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Chapter 8: Linear Regression

Compare the Models:

Method of Least Squares
The least squares regression line fitted to experimental data xi, yi has the form

yi  b0  b1xi  i
where the regression coefficients b0 and b1 are those values that minimize the error sum of squares

 i2  yi  y i
2.

These values are determined from the simultaneous solution of

b0

 i2  0 and 
b1

 i2  0

which are satisfied by the line passing through point x,y with slope

b1 
Sxy
SSx


xi  xyi  y

xi  x2 .

That is,

yi  y  b1xi  x  i

 y  b1x  b1xi  i

 b0  b1xi  i
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Graphical Solution 1
Example: A matrix of b0 and b1 coefficients was considered as fits to the following data:

i 1 2 3 4 5

xi 1 2 6 8 8

yi 3 7 14 18 23

The error sum of squares:

 i2  yi  y i
2

was evaluated for each b0,b1  case and then the results were used to create the contour plot of
 i2 as a function of b0 and b1 shown in the following figure. Interpret the contour plot, indicate the
equation of the line that provides the best fit to the data.

Graphical Solution 2
 Total variation in the response y relative to the mean y is given by SSTotal.
 Variation in the response relative to the least squares fitted line is given by SSError.
 Variation explained by the fitted line is given by SSRegression  SSTotal  SSError
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Coefficients Table for the Regression Model

Term Coeff SE t p

Constant b0 sb0 tb0  b0/sb0 pb0

Slope b1 sb1 tb1  b1/sb1 pb1

ANOVA Table for the Regression Model

Source df SS MS F p

Regression 1 SSRegr MSRegr  SSRegr/dfRegr F  MSRegr/MSError pRegr

Error n  2 SSError MSError  SSError/dfError

Total n  1 SSTotal

Summary Statistics
 Standard error:

s  MSError

 Coefficient of determination:

r2  SSRegr/SSTotal  1  SSError/SSTotal

 Adjusted coefficient of determination:

radj
2  1  dfTotal

dfError
SSError

SSTotal

Regression Report for the Example Problem

Regression Analysis: y versus x

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Regression 1 245.818 245.818 45.57 0.007

x 1 245.818 245.818 45.57 0.007
Error 3 16.182 5.394

Lack-of-Fit 2 3.682 1.841 0.15 0.879
Pure Error 1 12.500 12.500

Total 4 262.000

Model Summary

S R-sq R-sq(adj) R-sq(pred)
2.32249 93.82% 91.76% 83.13%

Coefficients

Term Coef SE Coef T-Value P-Value VIF
Constant 1.18 2.04 0.58 0.602
x 2.364 0.350 6.75 0.007 1.00

Regression Equation

y  1.18  2.364 x
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Regression Assumptions
 The xi are known exactly, without error.
 The i are homoscedastic with respect to the run order and the fitted values.
 The i are normally distributed.
 The i are independent.
 The function provides a good fit to the data.

Example:
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Linear Regression with MINITAB
 Use Stat Regression Fitted Line plot to construct a scatter plot with the superimposed

best fit line.
 Turn on residuals diagnostics in the Graph menu.
 Also capable of doing quadratic and cubic fits.

 Use Stat Regression Regression for a more detailed analysis.
 If the experiment has both qualitative and quantitative variables

 (V12 to V16) Use Stat ANOVA General Linear Model and enter the quantitative
variables as Covariates.

 (V17) Use Stat Regression Regression or Stat ANOVA General Linear Model

Linear Regression with NCSS
Use Analysis Regression/Correlation Linear Regression:
 In the Variables tab:

 Specify Y: Dependent Variable.
 Specify X: Independent Variable.

 In the Reports tab select:Run Summary, Text Statement, Reg. Estimation, R2 and r,
ANOVA, Assumptions, Y vs. X Plot, Resid. vs. X Plot, Histogram Plot, Prob. Plot., and
Resid. vs. Row Plot.

 In the Y vs. X tab turn on the Y on X Line, Pred. Limits, and Confidence Limits.
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Lack of Fit or Goodness of Fit
Always confirm that the linear model provides an appropriate fit to the data set using one or more of
the following methods:
 Inspect the y vs. x plot with the superimposed fitted line.
 The runs test for randomness.
 Fit a quadratic model and test the quadratic regression coefficient.
 The linear lack of fit test.

Example: Although r2 and radj
2 are very close to 1 in the following fitted line plot with linear fit, there is

obviously curvature in the data. The quadratic model fitted in the next plot appears to fit the data
better and the quadratic term is highly statistically significant p  0. 000. When a cubic equation
was fitted to the data (not shown), the cubic regression coefficient was not statistically significant
p  0. 585 so, by Occam’s Razor, the cubic term may be dropped from the model.
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S = 4.57078   R-Sq = 96.6%   R-Sq(adj) = 96.4%

 
x          8.0724   0.4173  19.35  0.000

Constant   39.798    3.150  12.63  0.000

Predictor    Coef  SE Coef      T      P
 

y = 39.8 + 8.07 x
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S = 2.12691   R-Sq = 99.3%   R-Sq(adj) = 99.2%
 

x^2        -0.56867  0.08205  -6.93  0.000

x            16.034    1.165  13.76  0.000
Constant     16.482    3.669   4.49  0.001

Predictor      Coef  SE Coef      T      P
 

y = 16.5 + 16.0 x - 0.569 x^2
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Tansformations to Linear Form
When a linear model is not appropriate attempt a model suggested by first principles of mechanics,
physics, chemistry, ...

Function y x a  Linear Form

y  aebx lny lna y  a  bx

y  axb logy logx loga y  a  bx

y  a  b
x

1
x y  a  bx

y  1
abx

1
y y  a  bx

y  ae
b
x lny 1

x lna y  a  bx

y  ax2ebx ln y

x2 lna y  a  bx

n  noe

kT lnn 1

kT
lnno y  a  x

j  AT2e

kT ln j

T2
1
kT

lnA y  a  x

fy  a  bfx fy fx y  a  bx

Transformations

Finding a Variable Transformation in MINITAB and NCSS
 Use the custom MINITAB macro %fitfinder to create a six by six matrix of graphs of y versus x

using the original, square root, square, log, power, and reciprocal transformations of both
variables.

 Use NCSS’s Graphics Scatter Plot Matrix Functions of 2 Variables menu to select
transformations for x and y to be used in a scatter plot matrix.
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Nonlinear Regression in MINITAB
Version 15:
 Method 1: Create columns for each term involving x in separate columns of the worksheet

using let commands or the Calc Calculator menu. Then use the regress command or
Stat Regression Regression to perform the regression analysis by including each desired
term in the model.

 Method 2: In the Model window of Stat ANOVA General Linear Model enter x and each
desired term involving x. Enter x as a covariate so that MINITAB knows to do regression on x
rather than the default choice of ANOVA.

Version 16:
 Use Stat Regression Nonlinear Regression. A catalog of common nonlinear functions is

provided or you can write your own.

Nonlinear Regression in NCSS
 Create a matrix of plots with transformed x and/or y values using Analysis Curve Fitting

Scatter Plot Matrix.
 Fit a user specified nonlinear function to yx data using Analysis Curve Fitting Nonlinear

Regression.

Sample Size Calculations
 Sample size can be calculated to detect a non-zero slope:

H0 : 1  0 vs. HA : 1  0

where

t  b1
sb1

 Sample size can be calculated to determine the slope with specified values of the precision
and confidence:

Pb1    1  b1    1  
where

  t/2sb1

 Both sample size calculations involve the standard error of the regression slope:

sb1 
s
SSx

where

SSx  xi  x2

The power of the hypothesis test or the precision of the confidence interval may be increased
by increasing SSx by:
 Taking more observations.
 Increasing the range of x values.
 Concentrating observations at the end of the x interval.

 See the detailed sample size calculation instructions in Chapter 8.
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ANOVA by Regression
ANOVA (with a qualitative predictor) can be performed using linear regression by creating indicator
variables where each indicator variable is associated with one level of the predictor. In MINITAB use
the Calc Make Indicator Variables menu to create the columns of indicator variables and then use
Stat Regression Regression with all of the indicators in the model. This is the method that
MINITAB uses to analyze qualitative variables by ANOVA and quantitiative variables by regression in
the Stat ANOVA General Linear Model menu; however, MINITAB hides the use of the indicator
variables from the user.
Example: Analyze the data in the box plot by ANOVA and by regression.
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y

S = 9.44817   R-Sq = 41.86%   R-Sq(adj) = 35.21%

 
Total   39  5373.77
Error   35  3124.38  3124.38   89.27

x        4  2249.40  2249.40  562.35  6.30  0.001
Source  DF   Seq SS   Adj SS  Adj MS     F      P

 
Analysis of Variance for y, using Adjusted SS for Tests
 

x       fixed       5  1, 2, 3, 4, 5
Factor  Type   Levels  Values

 
General Linear Model: y versus x 
 

C1=4     1     0.00
C1=3     1   120.33
C1=2     1  2062.76
C1=1     1    66.31
Source  DF   Seq SS
 
Total           39  5373.77
Residual Error  35  3124.38   89.27
Regression       4  2249.40  562.35  6.30  0.001
Source          DF       SS      MS     F      P
 
Analysis of Variance
 
S = 9.44817   R-Sq = 41.9%   R-Sq(adj) = 35.2%
 
C1=4        -0.000    4.724  -0.00  1.000
C1=3        -4.750    4.724  -1.01  0.322
C1=2       -20.125    4.724  -4.26  0.000
C1=1        -3.000    4.724  -0.64  0.530
Constant   204.000    3.340  61.07  0.000
Predictor     Coef  SE Coef      T      P
 
y = 204 - 3.00 C1=1 - 20.1 C1=2 - 4.75 C1=3 - 0.00 C1=4
The regression equation is
 
 
* C1=5 has been removed from the equation.
* C1=5 is highly correlated with other X variables
 
Regression Analysis: y versus C1=1, C1=2, C1=3, C1=4, C1=5 
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General Linear Model
Fit yx,A where x is a continuous predictor to be analyzed by regression (i.e. a covariate) and A is a
qualitative predictor to be analyzed by ANOVA using a general linear model.
 In MINITAB use Stat ANOVA General Linear Model.
 In NCSS using Analysis ANOVA GLM ANOVA.
 Example: Fit yx,A where x is a covariate and A has three levels 1, 2, and 3.

 Specify the model to include the terms x, A, and x  A where x is a covariate.
 The model will have the form:

yix,A  b0  b01A  1  b02A  2  b03A  3

 xb1  b11A  1  b12A  2  b13A  3  i

 If there are no A effects, then the model reduces to yix,A  b0  b1x.
 The b0j coefficients are corrections to b0 for each level of A.
 b03  b01  b02 
 The b1j coefficients are corrections to b1 for each level of A.
 b13  b11  b12 

 If y is a function of two or more covariates, avoid colinearity by mean-adjusting the covariates.
For example, instead of fitting yx1,x2 , fit yx1

 ,x2
  where x1

  x1  meanx1  and
x2
  x2  meanx2 .

Example: An experiment was performed to determine how temperature affects the growth of three
different strains of tomatos. Three samples of each strain were evaluated at five different levels of
temperature. Determine how the degrees of freedom are partitioned if the model must account for
possible slope differences between the strains and include a generic curvature term in the model to
check for lack of linear fit.
Solution: The model will have the form:

y  b0  b01Strain  1  b02Strain  2  b03Strain  3

 Tempb1  b11Strain  1  b12Strain  2  b13Strain  3

 b2Temp2

where b03  b01  b02  and b13  b11  b12 . Note that the b0i are bias corrections for the different
strains and the b1i are slope corrections for the different strains.

Source df

Strain 2

Temp 1

Strain*Temp 2

Temp*Temp 1

Error 38

Total 44
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Special Problems:
 Inverse Prediction - What is the confidence interval for the unknown x value that would be

expected to deliver a specified y value?
 Errors-in-Variables - If the x values are noisy, so they are not known exactly, then the linear

regression coefficients will be biased, i.e. will not correctly predict y from x. If the standard
deviation of the error in x can be determined then corrected values of the regression
coefficients can be calculated.

 Weighted Regression - If the residuals are not homoscedastic with respect to xi then the
observations with greater inherent noise deserve to be weighted less heavily than
observations where there is less noise. If a suitable variable transformation cannot be found,
then if the local variance for the observation xi,yi is  i

2, apply weighting factor wi  1/ i
2, i.e.

xi, yi,wi.
 In MINITAB use the weighting option in the Options menu of either Stat

Regression Regression or Stat ANOVA General Linear Model.
 In NCSS use the weighting option in the Weighting Variable: window of Analysis

Regression/Correlation Linear Regression.
 If the response is dichotomous or binary (i.e. having just two states, e.g. pass/fail) then use

binary logistic regression (BLR). In MINITAB use the Stat Regression Binary Logistic
Regression menu.

Design of Experiments, Copyright © 1999-2022 Paul Mathews 101



Design of Experiments, Copyright © 1999-2022 Paul Mathews 102



Chapter 9: 2k Experiments

Introduction
 Two levels of each of k design variables.
 Include all possible combinations of variable levels so 2k is the number of unique runs in one

replicate.
 Makes use of hidden replication.
 Can resolve main effects, two-factor interactions, and higher order interactions if desired:

2k  k
0

 k
1

 k
2

 k
3

  k
k

We usually don’t look for three-factor or higher order interactions.
 Cannot detect the presence of or quantify curvature because there are only two levels of each

variable.

Coded Variables
 The two-level factorial designs are easiest to express using coded 1 variable levels.
 Coded levels offer significant mathematical advantages, e.g. easy to interpret variable effects.
 Coded levels add some complications, such as the need to reference the variables matrix

when building the experiment from the design matrix.
 Must be able to convert back and forth between physical and coded units:

 From physical x to coded x units:

x  x  x0

x

 From coded to physical units:

x  x0  xx

Example An experiment is performed with two levels of temperature: 25C and 35C corresponding to
coded 1 and 1 levels of temperature, respectively. Find the coded value that corresponds to
28C.
Solution: The 0 level of temperature is x0  30C and the step size to the 1 and 1 levels is
x  5C, so the transformation equation to coded units is:

x  x  30
5

Then the coded value of x  28C is:

x  28  30
5

 0. 4
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Example Use the definitions in the preceding example to determine the temperature that has a coded
value of x   0. 6.
Solution: The equation to transform from coded to actual values is:

x  30  5x

so the actual temperature that corresponds to the coded value x   0. 6 is:

x  30  50. 6  33

Transformation of T   0. 6 Coded Units Back to

The 22 Experiment
 Variables matrix:

x1: Temperature x2: Time

1 25 3

1 35 5

Units °C min

 Design matrix:

Run x1 x2

1  
2  

3  
4  

 Plot of design space in coded units:
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X

X

-

+

1

2

2x2 Factorial Design
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The Effect of x1

b1 
y  y
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+
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The Effect of x2

b2 
y   y 
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The Interaction Effect x12
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Example: Construct a model of the form:

yx1, x2  b0  b1x1  b2x2  b12x12

for the data set:

x2

1 1

x1 1 61, 63 41, 35 y  50

1 76, 72 68, 64 y  70

y   68 y   52 y  60

Solution:

10-1

80

70

60

50

40

30

x1

y

0

60

b  = 20 / 2 = 101

10-1

80

70

60

50

40

30

x2
y

0

60

b  = -16 / 2 = -82

10-1

80

70

60

50

40

30

x12

y

0

60

b   = 8 / 2 = 412

Solution:

y  60  10x1  8x2  4x12

Source b s t p df total  7

Constant 60 1. 06 57 0.00 dfmodel  3

x1 10 1. 06 9.4 0.00 df  4

x2 8. 0 1.06 7. 5 0.00 s  3. 0

x12 4. 0 1.06 3.8 0.02 r2  0. 977

radj
2  0. 957
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Back to Coded Variable Levels: Whay Are They Necessary?
 An experiment’s run matrix can be expressed in either physical/uncoded or coded units.
 When expressed in physical/uncoded units there are correlations between the terms in the

model that pollute the pure values of the regression coefficients and prevent us from judging
them for statistical significance.

 When expressed in coded units /  1 the terms in the model are guaranteed to be
independent so we can safely judge them for statistical significance.

Example: Consider a 23 design with the following variables matrix:

A : Temperature B : Time C : Pressure

1 25 3 40

1 35 5 60

Units °C min psi

and run matrices in physical/uncoded and coded units:

Run A B C Run A B C

1 25 3 40 1   
2 25 3 60 2   

3 25 5 40 3   
4 25 5 60 4   

5 35 3 40 5   
6 35 3 60 6   

7 35 5 40 7   
8 35 5 60 8   

The correlation matrix with the variables expressed in physical/uncoded units (created with the
MINITAB macro correlate.mac) is:

Temp Time Press AB AC BC
Time 0.000
Press 0.000 0.000
AB 0.549 0.824 0.000
AC 0.635 0.000 0.762 0.349
BC 0.000 0.772 0.617 0.636 0.470
ABC 0.452 0.679 0.543 0.823 0.713 0.880

The correlation matrix with the variables expressed in coded units is:
Temp Time Press AB AC BC

Time 0.000
Press 0.000 0.000
AB 0.000 0.000 0.000
AC 0.000 0.000 0.000 0.000
BC 0.000 0.000 0.000 0.000 0.000
ABC 0.000 0.000 0.000 0.000 0.000 0.000

 Reputable software (e.g. MINITAB) will allow you to specify the run matrix in
physical/uncoded units but will perform the analysis in coded units.

 Use MINITAB’s Stat DOE Display Design Units for factors menu to toggle the display
of the run matrix between physical/uncoded and coded units.
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Creating and Analyzing 2k Designs in MINITAB
 Use Stat DOE Factorial Create Factorial Design to create a design.
 Use Stat DOE Factorial Define Custom Factorial Design to specify an existing design

so that MINITAB will recognize it.
 Use Stat DOE Factorial Factorial Plots to make plots of the main effects and two-factor

interactions.
 Use Stat DOE Factorial Analyze Factorial Design to analyze the data.

 Enter the response in the Responses: window.
 Specify the terms to be included in the model in the Terms window.
 Turn on residuals diagnostic graphs and effects plots in the Graphs window.

Creating 2k Designs in NCSS
Use Analysis Design of Experiments Two-level Designs:
 Specify a column for the response in Simulated Response Variable.
 Specify a column for blocks in Block Variable.
 Specify the column for the first design variable in First Factor Variable.
 Specify the factor levels in Factor Values. The values 1 and 1 are recommended. Specify

a set of levels for as many variables as are required for the design.
 Specify the number of replicates in Replications:
 Specify the number of runs to be used for each block in Block Size.

Analyzing 2k Experiments in NCSS
Use Analysis Design of Experiments Analysis of Two-level Designs:
 On the Variables tab:

 Specify the Response Variable.
 Specify the Block Variable.
 Specify the Factor Variables.

Analyzing 2k Experiments in NCSS
As an alternative analysis that provides more control and better residuals diagnostics use Analysis
Regression/Correlation Multiple Regression (2001 Edition):
 On the Variables tab:

 Specify the response in Y: Dependent Variable.

 Specify the design variables (e.g. A B C) in X’s: Numeric Independent Variables.

 Specify the blocking variable in X’s: Categorical Independent Variables.

 On the Model tab:

 In the Which Model Terms window select Custom Model.

 In the Custom Model window specify the model including block, main effects and interactions, e.g.

Block  A  B  C  A  B  A  C  B  C

 On the Reports tab specify: Run Summary, Correlations, Equation, Coefficient, Write Model, ANOVA
Summary, ANOVA Detail, Normality Tests, Res-X’s Plots, Histogram, Probability Plot, Res vs Yhat Plot,
Res vs Row Plot.
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Rules for Refining Models
 Fit the full model first, including main effects and interactions.
 Starting from the highest order interactions, begin removing the least significant ones one at a

time while watching the radj
2 .

 To retain an interaction in the model, all of its main effects and lower-order interactions must
also be retained. For example, to retain the three-factor interaction ACE the model must also
contain A, C, E, AC, AE, and CE.

 Don’t expect to remove all of the statistically insignificant terms in the model. If the radj
2 takes a

sudden plunge, put the last term back in the model.

Sample Size
The power and precision of 2k experiments is determined by the total number of experimental runs,
which is the product of the number of runs in one replicate and the number of replicates. This implies
that the size of an experiment is to some degree independent of the number of variables so look for
opportunities to add variables to experiments.

Sample Size to Detect an Effect
The number of experimental runs required to detect a difference  between the 1 levels of a design
variable with power P  1   is given by:

r  2k  4 t/2  t 




2

Example: An experiment is required to have 90% power   0. 10 to detect an effect size of
  20. The process is known to have   25. How many total runs are required? How many
replicates of a 21, 22, 23, design are required?
Solution: The approximate total number of runs required is:

r  2k  4 t/2  t 




2

 4 1. 96  1. 282 25
20

2

 64

A 21 design will require 64/21  32 replicates, a 22 design will require 64/22  16 replicates, a 23

design will require 64/23  8 replicates, 

Sample Size to Quantify an Effect
The number of experimental runs required to determine the regression coefficient i for one of the k
two-level design variables with precision  and confidence 1   so that:

Pbi     i  bi    1  
is given by:

r  2k  t/2



2
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2k plus Centers Design
If all k design variables are quantitative then center cells can be added to an experiment, e.g.:

x1 x2 x12 x11 x22

    

    

    

    

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Center cells 1) provide extra error degrees of freedom and 2) provide a method for testing for linear
lack-of-fit. The model will be of the form:

y  b0  b1x1  b2x2   b12x12   bx
where the curvature measured by b could be due to one or more of the design variables.If the b
coefficient is not statistically significant then we can remove it from the model by Occam and
conclude that the simple linear model with interactions is valid. If the b coefficient is statistically and
practically significant then it is necessary to perform a follow-up experiment using techniques from
Chapter 11 to determine the source of the curvature. The designs from Chapter 11 can resolve the
sources of curvature in a model with quadratic terms for each variable of the form:

y  b0  b1x1  b2x2   b12x12   b11x1
2  b22x2

2 
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Chapter 10: Fractional Factorial Experiment Designs

Motivation
2k experiments get very large, so:
 We need a way to block large full-factorial designs.
 We don’t usually need to resolve three-factor and higher order interactions.

2k Experiments Get Very Large
If the models that we fit to 2k experiments only include main effects and two-factor interactions, then
for one replicate:

df total  2k  1

dfmodel  k
1

 k
2

df  k
3

  k
k

and df increases MUCH faster than dfmodel:

k 2k dftotal dfmodel dferror

2 4 3 3 0

3 8 7 6 1

4 16 15 10 5

5 32 31 15 16

6 64 63 21 42

7 128 127 28 99

8 256 255 36 219

9 512 511 45 466

10 1024 1023 55 968

Do we really need so many error degrees of freedom?
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Consider the 25 Design:

The correlation matrix for the 25 design:
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Suppose That We Use a Random 16 Run Subset:

Correlation matrix for the experiment of 16 randomly chosen runs:

There are 32
16

 601,000,000 different 16-run subsets. Most of them will have undesireable
correlation matrices, but some will not.

Design of Experiments, Copyright © 1999-2022 Paul Mathews 113



If We Can’t Beat the Correlations, Can We at Least Find a Way to
Tolerate Them?
Consider only those runs where x5  x1x2x3x4  x1234:

Correlation matrix for the 16 run experiment with x5  x1234:

This experiment contains one half of the original 32 run 25 full-factorial design so it is designated a
251 half-fractional factorial design.

How Was This Design Determined?
x5  x1x2x3x4  x1234

or

5  1234

and this implies:

1  2345 12  345 23  145 34  125 45  123

2  1345 13  245 24  135 35  124

3  1245 14  235 25  134

4  1235 15  234

5  1234

For example:

15  11234  11234  234
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Design Resolution
 In a fractional factorial design, every confounding relation contains the same number of

variables. (This is not quite true, but for the moment...)
 The number of variables in a confounding relation is called the design resolution.
 The design designation, e.g. 251, is modified by adding a Roman numeral subscript, e.g. V,

IV, III, to indicate the design resolution.
 Example: The 251 design confounds main effects with four factor interactions (e.g. 5  1234)

and two-factor interactions with three-factor interactions (e.g. 12  345) so the design is
Resolution V:

2V
51

Design Designation
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Analysis of the 2V
51 Saturated Design

 In the resolution V design, we must assume that all three-factor and higher order interactions
are insignificant so the model contains only main effects and two-factor interactions. This
model consumes dfmodel  5  10  15 degrees of freedom.

y  b0  b1x1  b2x2  b3x3  b4x4  b5x5

 b12x12  b13x13  b14x14  b15x15

 b23x23  b24x24  b25x25

 b34x34  b35x35

 b45x45

 If an experiment uses only one replicate of the 2V
51 design, the model will consume all

available degrees of freedom:

df  df total  dfmodel  15  15  0

Such designs are called saturated designs.
 To analyze a saturated design either:

 Use an independent estimate of  to construct the required F tests.
 Fit the model with main effects and two-factor interactions and construct the normal

probability plot of the regression coefficients. Many of the regression coefficients can
be expected to be negligible b i  0 and will fall on an approximately straight line near
the center of the normal plot. Any outlying coefficients are possibly significant. Use a
reverse stepwise algorithm to refine the model by dropping the weakest model terms
first.
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Fractional Factorial Designs and Generators
k Design Resolution Design Runs Generators

3 III 2III
31 4 3  12

4 IV 2IV
41 8 4  123

5 III 2III
52 8 4  12, 5  13

V 2V
51 16 5  1234

6 III 2III
63 8 4  12, 5  13, 6  23

IV 2IV
62 16 5  123, 6  234

VI 2VI
61 32 6  12345

7 III 2III
74 8 4  12, 5  13, 6  23, 7  123

IV 2IV
73 16 5  123, 6  234, 7  134

IV 2IV
72 32 6  1234, 7  1245

VII 2VII
71 64 7  123456

8 IV 2IV
84 16 5  234, 6  134, 7  123, 8  124

IV 2IV
83 32 6  123, 7  124, 8  2345

V 2V
82 64 7  1234, 8  1256

VIII 2VIII
81 128 8  1234567

The 2IV
41 Design

 The design generator is:

4  123

 The confounding relations are:

1  234 12  34

2  134 13  24

3  124 14  23

4  123

 All confounding relations include 4 variables so the design is Resolution IV:

2IV
41

 Determine the matrix of runs by starting from the 23 design in 8 runs and generate x4 with the
design generator.
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The 2IV
41 Design

Run matrix for the 2IV
41 Design

Run x1 x2 x3 x4 x12 x13 x14 x23 x24 x34

1 - - - -      

2 - -    - - - - 

3 -  -  -  - -  -

4 -   - - -   - -

5  - -  - -   - -

6  -  - -  - -  -

7   - -  - - - - 

8          

Correlation matrix for the 2IV
41 Design

x1 x2 x3 x4 x12 x13 x14 x23 x24 x34

x1 1 0 0 0 0 0 0 0 0 0

x2 0 1 0 0 0 0 0 0 0 0

x3 0 0 1 0 0 0 0 0 0 0

x4 0 0 0 1 0 0 0 0 0 0

x12 0 0 0 0 1 0 0 0 0 1

x13 0 0 0 0 0 1 0 0 1 0

x14 0 0 0 0 0 0 1 1 0 0

x23 0 0 0 0 0 0 1 1 0 0

x24 0 0 0 0 0 1 0 0 1 0

x34 0 0 0 0 1 0 0 0 0 1
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Analysis of the 2IV
41 Design

 The model for the 24 full factorial design can include all possible terms:

y  b0  b1x1  b2x2  b3x3  b4x4

 b12x12  b13x13  b14x14  b23x23  b24x24  b34x34

 b123x123  b124x124  b134x134  b234x234

 b1234x1234

 We cannot include all of those terms the model for the 2IV
41 design:

y  b0  b1x1  b2x2  b3x3  b4x4

 b12x12  b13x13  b14x14

because x12  x34, x13  x24, and x14  x23.
 Use Occam and follow-up experiments to interpret the significant interaction terms.

Example: A 2IV
41 experiment yields the following model. The significant coefficients are indicated with

an ”*”. Simplify the model.

y  b0
  b1x1  b2

x2  b3
x3  b4x4

 b12x12  b13x13  b14
 x14

Solution: The x14 term is probably not the true source of the effect because x1 and x4 are not
significant. But x14 is confounded with x23. It is much more likely that x23 is the real source of the
effect since x2 and x3 are both significant. The model reduces to:

y  b0
  b2

x2  b3
x3  b23

 x23
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The Consequences of Confounding
 If 12  34 then b12

full  b34
full  b12

fractional

 If 12  34 then b12
full  b34

full  b12
fractional

 Two insignificant terms in the full design can add to become marginally significant in the
fractional design:

b12  b34  b12


 Two significant terms in the full design can cancel out to become insignificant in the fractional
design:

b12
  b34

  b12

More Highly Fractionated Designs 2kp
 2k1 is a half fractional factorial design.
 2k2 is a quarter fractional factorial design.
 2k3 is an eighth fractional factorial design.
 2k4 is a sixteenth fractional factorial design.
 If the design is 2kp then there will be p generators.

The 2III
74 Design

 Start from a 23 design with 8 runs.
 The generators for variables x4, x5, x6, and x7 are:

x4  x12

x5  x13

x6  x23

x7  x123

 The shortest generator/confounding relation has three variables so this is a Resolution III
design.

 Since all main effects are confounded with two-factor interactions we must assume that the
interactions are not significant so:

y  b0  b1x1  b2x2  b3x3  b4x4  b5x5  b6x6  b7x7

Analyzing the 2III
31 Design

 The confounding relations are:

x1  x23

x2  x13

x3  x12

 We can only include main effects in the model:

y  b0  b1x1  b2x2  b3x3

 But is the model with main effects correct, or is one of the following models the right one?

y  b0  b1x1  b2x2  b12x12

y  b0  b1x1  b3x3  b13x13

y  b0  b2x2  b3x3  b23x23

Design of Experiments, Copyright © 1999-2022 Paul Mathews 120



Folding
 Two folded Resolution III designs always form a Resolution IV design.
 Fold an experiment by inverting all of the  and  variable levels.
 Run the original Resolution III design and its fold-over in separate blocks.
 Analyze them together for main effects and select two-factor interactions.
 Folding can be also be used with higher resolution designs. For example, the fold-over of a

half-fractional factorial design is just the complementary half-fraction to the original design.

Use of Fractional Factorial Designs
 Avoid the use of resolution III designs except to define blocks in designs of higher resolution.
 Resolution IV designs occasionally provide enough information to answer general questions.
 Use resolution IV designs to define blocks in designs of higher resolution.
 Resolution V designs are considered safe.

Creating and Analyzing 2kp Designs in MINITAB
Use the same tools to design and analyze fractional factorial designs in MINITAB as are used for full
factorial designs.
 Use Stat DOE Factorial Create Factorial Design to create a design.
 Use Stat DOE Factorial Define Custom Factorial Design to specify an existing design

so that MINITAB will recognize it.
 Use Stat DOE Factorial Factorial Plots to make plots of the main effects and two-factor

interactions.
 Use Stat DOE Factorial Analyze Factorial Design to analyze the data.

 Enter the response in the Responses: window.
 Specify the terms to be included in the model in the Terms window. When refining a

model, it may be necessary to remove an interaction from a model and replace it with
another interaction that the first is confounded with. For example, if AB  CD and the
original model shows that A, B, and CD are statistically significant, then replace CD
with AB.

 Turn on residuals diagnostic graphs and effects plots in the Graphs window.
 Use Stat DOE Modify Design Fold Design to fold the original design.

Creating and Analyzing 2kp Designs in NCSS
Create a fractional factorial experiment using Analysis Design of Experiments Fractional
Factorial Designs:
 Specify a column for the response in Simulated Response Variable (e.g. c1 or Y).
 Specify a column for blocks in Block Variable (e.g. c2 or Blocks).
 Specify the column for the first design variable in First Factor Variable (e.g. c3 or A)
 Specify the factor levels in Factor Values. The values 1 and 1 are recommended. Specify

a set of levels for as many variables as are required for the design.
 Specify the number of experimental runs in Runs.
 Specify the number of runs to be used for each block in Block Size.

Analyze the experiment using Analysis Design of Experiments Analysis of Two-level Designs
or Analysis Regression/Correlation Multiple Regression (2001 Edition). See the notes from
Chapter 9 for details for configuring these analyses.
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Plackett-Burman Designs
 Plackett-Burman (P-B) designs are a special form of highly fractionated two-level designs.
 All P-B designs are resolution III, i.e. main effects are confounded with two-factor interactions;

however, the correlations between the main effects and two-factor interactions are less than
one with the exception of the 8 run design.

 If A is confounded with BC, BD, etc., then bA
fractional  bA

full  rA,BCbBC
full  rA,BDbBD

full 
 P-B designs are primarily used for screening experiments and robust design validation

studies.
 P-B designs have N runs where N is a multiple of 4, so there are P-B designs for 4, 8, 12, 16,

20, ... runs.
 The P-B designs are redundant with the 2kp designs when 2kp is an integer multiple of 4, i.e.

those designs with 4, 8, 16, 32, ... runs
 P-B designs can resolve up to N  1 main effects.
 If an experiment has less than N  1 variables, then just leave the extra variables out of the

model, i.e. pool them with the error estimate.
 With respect to every pair of variables, e.g. A and B, the experiment collapses to a 22 design

with replicates.
 Every variable is confounded with two-factor interactions involving all other variables except

itself, e.g. A will be confounded with two-factor interactions involving B, C, ... but none
involving A.

 The P-B design generator is the first row of the design matrix. The other rows are generated
by shifting the signs by one position for each successive row and finally adding an Nth row of
all minus signs to preserve the design’s balance.

 Example: 12 run P-B design with 11 design variables in standard order:

 Run   A  B  C  D  E  F  G  H  J  K  L 
  1   +  -  +  -  -  -  +  +  +  -  + 
  2   +  +  -  +  -  -  -  +  +  +  - 
  3   -  +  +  -  +  -  -  -  +  +  + 
  4   +  -  +  +  -  +  -  -  -  +  + 
  5   +  +  -  +  +  -  +  -  -  -  + 
  6   +  +  +  -  +  +  -  +  -  -  - 
  7   -  +  +  +  -  +  +  -  +  -  - 
  8   -  -  +  +  +  -  +  +  -  +  - 
  9   -  -  -  +  +  +  -  +  +  -  + 
 10   +  -  -  -  +  +  +  -  +  +  - 
 11   -  +  -  -  -  +  +  +  -  +  + 
 12   -  -  -  -  -  -  -  -  -  -  - 

 
 Create the fold-over design of a P-B design by inverting all of the /- signs in the original

design matrix. Use the custom MINITAB macro fold.mac to append the fold-over design to the
original P-B design.

 As with other resolution III designs, the P-B design combined with its fold-over is resolution
IV. Such designs provide VERY USEFUL screening experiments for processes with many
variables. These designs have considerable confounding between two-factor interactions but
provide excellent resolution for main effects - meeting the goal of the design for screening
experiments.

 Example: The 12 run P-B design combined with its 12 run fold-over, giving a total of 24 runs,
is resolution IV so can resolve up to 11 main effects (confounded with three factor
interactions) and 11 two-factor interactions (confounded with other two-factor interactions).
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Chapter 11: Response Surface Experiments

What Function Can You Fit?

 With only two levels of x, a simple linear model is all we can fit.
 r2 might be high, but what does it mean?

What Function Can You Fit?

 At least three levels are necessary to detect lack of linear fit.
 r2 and lack-of-fit are different issues. r2 is not always a good lack-of-fit detector.
 The meaning of r2 is limited to the data being analyzed.
 Our goal is to fit models that can resolve quadratic terms:

y  b0  b1x1  b2x2   b12x12   b11x1
2  b22x2

2 
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Response Surface Designs
 To use a response surface design:

 All design variables must be quantitative!
 Must have three or more levels of each variable.

 Available designs:
 2k plus centers designs

 Not true response surface designs.
 Can detect the presence of curvature but can’t determine its source.

 3k designs
 Box-Behnken designs - BBk
 Central composite designs - CC2k
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2k Plus Centers Designs
 Consider the 23 plus centers design:

 Row  x1  x2  x3  x12  x13  x23  x11  x22  x33 
  1  -1  -1  -1    1    1    1    1    1    1 
  2  -1  -1   1    1   -1   -1    1    1    1 
  3  -1   1  -1   -1    1   -1    1    1    1 
  4  -1   1   1   -1   -1    1    1    1    1 
  5   1  -1  -1   -1   -1    1    1    1    1 
  6   1  -1   1   -1    1   -1    1    1    1 
  7   1   1  -1    1   -1   -1    1    1    1 
  8   1   1   1    1    1    1    1    1    1 
  9   0   0   0    0    0    0    0    0    0 

 

x1

x2

x3

-1-1

-1

1

1

1

with centers
2  factorial design3

(0,0,0)

2k Plus Centers Designs
 There are three levels of each variable but ...

y  b0  b1x1  b2x2   b12x12   bx2

where

b11  b22  b

 b provides a lack of fit test but nothing more.
 What we really wanted is:

y  b0  b1x1  b2x2   b12x12   b11x1
2  b22x2

2 

What designs can deliver this model?
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The 3k Factorial Designs
 Three levels of each of k quantitative variables.
 All possible combinations of levels: 3k.
 Consider the 33 design:

 Row  x1  x2  x3 
  1  -1  -1  -1 
  2  -1  -1   0 
  3  -1  -1   1 
  4  -1   0  -1 
  5  -1   0   0 
  6  -1   0   1 
  7  -1   1  -1 
  8  -1   1   0 
  9  -1   1   1 
 10   0  -1  -1 
 11   0  -1   0 
 12   0  -1   1 
 13   0   0  -1 
 14   0   0   0 
 15   0   0   1 
 16   0   1  -1 
 17   0   1   0 
 18   0   1   1 
 19   1  -1  -1 
 20   1  -1   0 
 21   1  -1   1 
 22   1   0  -1 
 23   1   0   0 
 24   1   0   1 
 25   1   1  -1 
 26   1   1   0 
 27   1   1   1 
 

-1
-1

-1

1

1

1

x1

x2

x3

The 3k Factorial Designs
 The model will be:

y  b0  b1x1  b2x2  b3x3  b12x12  b13x13  b23x23

 b11x1
2  b22x2

2  b33x3
2

 The degrees of freedom:

Runs  33  27

dftotal  27  1  26

dfmodel  3  3  3  9

df  26  9  17

and Occam will probably free up more error degrees of freedom.
 This is not an efficient use of resources.
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BB3

x1 x2 x3 Runs

1 1 0 4

1 0 1 4

0 1 1 4

0 0 0 3

Total Runs 15

BB6

x1 x2 x3 x4 x5 x6 Runs

1 1 0 1 0 0 8

0 1 1 0 1 0 8

0 0 1 1 0 1 8

1 0 0 1 1 0 8

0 1 0 0 1 1 8

1 0 1 0 0 1 8

0 0 0 0 0 0 6

Total Runs 54

BB4

Block x1 x2 x3 x4 Runs

1 1 1 0 0 4

1 0 0 1 1 4

1 0 0 0 0 1

2 1 0 0 1 4

2 0 1 1 0 4

2 0 0 0 0 1

3 1 0 1 0 4

3 0 1 0 1 4

3 0 0 0 0 1

Total Runs 27

BB7

x1 x2 x3 x4 x5 x6 x7 Runs

0 0 0 1 1 1 0 8

1 0 0 0 0 1 1 8

0 1 0 0 1 0 1 8

1 1 0 1 0 0 0 8

0 0 1 1 0 0 1 8

1 0 1 0 1 0 0 8

0 1 1 0 0 1 0 8

0 0 0 0 0 0 0 6

Total Runs 62

BB5

Block x1 x2 x3 x4 x5 Runs

1 1 1 0 0 0 4

1 0 0 1 1 0 4

1 0 1 0 0 1 4

1 1 0 1 0 0 4

1 0 0 0 1 1 4

1 0 0 0 0 0 3

2 0 1 1 0 0 4

2 1 0 0 1 0 4

2 0 0 1 0 1 4

2 1 0 0 0 1 4

2 0 1 0 1 0 4

2 0 0 0 0 0 3

Total Runs 46
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CC22 

x1 x2 Runs

1 1 4

0 0 5

1. 41 0 2

0 1. 41 2

Total Runs 13

CC2V
82 

x1 x2 x3 x4 x5 x6 x7 x8 Runs

1 1 1 1 1 1 1234 1256 64

0 0 0 0 0 0 0 0 10

2. 83 0 0 0 0 0 0 0 2

        

0 0 0 0 0 0 0 2. 83 2

Total Runs 90

CC23 

x1 x2 x3 Runs

1 1 1 8

0 0 0 6

1. 68 0 0 2

0 1. 68 0 2

0 0 1. 68 2

Total Runs 20

CC2VII
71 

x1 x2 x3 x4 x5 x6 x7 Runs

1 1 1 1 1 1 123456 64

0 0 0 0 0 0 0 14

2. 83 0 0 0 0 0 0 2

       

0 0 0 0 0 0 2. 83 2

Total Runs 92

CC24 

x1 x2 x3 x4 Runs

1 1 1 1 16

0 0 0 0 7

2 0 0 0 2

    

0 0 0 2 2

Total Runs 31

CC2VI
61 

x1 x2 x3 x4 x5 x6 Runs

1 1 1 1 1 12345 32

0 0 0 0 0 0 9

2. 38 0 0 0 0 0 2

      

0 0 0 0 0 2. 38 2

Total Runs 53

CC25 

x1 x2 x3 x4 x5 Runs

1 1 1 1 1 32

0 0 0 0 0 10

2. 38 0 0 0 0 2

     

0 0 0 0 2. 38 2

Total Runs 52

CC2V
51 

x1 x2 x3 x4 x5 Runs

1 1 1 1 1234 16

0 0 0 0 0 6

2 0 0 0 0 2

     

0 0 0 0 2 2

Total Runs 32
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The Box-Behnken Design
 Three levels of k variables.
 Kind of a fraction of the 3k design with extra center cells.
 Consider the BB3 design:

 Row   A   B   C 
  1  -1  -1   0 
  2   1  -1   0 
  3  -1   1   0 
  4   1   1   0 
  5  -1   0  -1 
  6   1   0  -1 
  7  -1   0   1 
  8   1   0   1 
  9   0  -1  -1 
 10   0   1  -1 
 11   0  -1   1 
 12   0   1   1 
 13   0   0   0 
 14   0   0   0 
 15   0   0   0 

-1
-1

-1

1

1

1

x1

x2

x3

0

0

0

The Box-Behnken Design
 The model will be:

y  b0  b1x1  b2x2  b3x3  b12x12  b13x13  b23x23

 b11x1
2  b22x2

2  b33x3
2

 The degrees of freedom:

Runs  15

dftotal  15  1  14

dfmodel  3  3  3  9

df  14  9  5

and Occam will probably free up more error degrees of freedom.
 Blocking is available.
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The Central Composite Designs
 Based on the 2k and 2kp designs.
 Center cells and star points added.
 Five levels of each variable.
 Consider the CC23  design:

 Row  x1     x2     x3 
  1  -1     -1     -1 
  2  -1     -1      1 
  3  -1      1     -1 
  4  -1      1      1 
  5   1     -1     -1 
  6   1     -1      1 
  7   1      1     -1 
  8   1      1      1 
  9   0      0      0 
 
 10  -1.68   0      0 
 11   1.68   0      0 
 12   0     -1.68   0 
 13   0      1.68   0 
 14   0      0     -1.68 
 15   0      0     -1.68 
 16   0      0      0 
 17   0      0      0 
 18   0      0      0 
 19   0      0      0 
 20   0      0      0 
 x1

x2

x3

-1-1

-1

1

1

1

surface design
CC(2 ) response3

The Central Composite Designs
 The model will be:

y  b0  b1x1  b2x2  b3x3  b12x12  b13x13  b23x23

 b11x1
2  b22x2

2  b33x3
2

 The degrees of freedom:

Runs  8  6  6  20

df total  20  1  19

dfmodel  3  3  3  9

df  19  9  10

and Occam will probably free up more error degrees of freedom.
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Comparison of the Five Variable Experiments

Design Runs dftotal dfmodel df

35 243 242 20 222

BB5 46 45 20 25

CC2V
51  32 31 20 11

and Occam will free up more error degrees of freedom.

Comparison of the Designs: Sample Size
 3k experiments are inefficient and don’t get built.
 The sample size for BB3 is smaller than the sample size for CC23  so more BB3

experiments get built.
 The sample size for CC2V

51  is smaller than the sample size for BB5 so more CC2V
51 

experiments get built.

Comparison of the Designs: Knowledge of the Design Space
 Different strategies are used for when you know and don’t know the limitations of the

variables.
 When you know safe limits for all of the design variables consider using the BB designs.
 When you don’t know safe limits for all of the design variables consider using the CC designs.
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Response Surface Designs in MINITAB
 Use Stat DOE Response Surface Create Response Surface Design to create a

design.
 Use Stat DOE Response Surface Define Custom Response Surface Design to

specify an existing design so that MINITAB will recognize it.
 Use Stat DOE Response Surface Analyze Response Suface Design to analyze the

data.
 Enter the response in the Responses: window.
 Specify the terms to be included in the model in the Terms window.
 Turn on residuals diagnostic graphs in the Graphs window.

 Use Stat DOE Response Surface Contour/Surface Plots to create multidimensional
response surface plots.

 Use Stat DOE Response Surface Response Optimizer to find the values of the design
variables that will meet a specified response goal where the response can be a minimum, a
maximum, or a target

Response Surface Designs in NCSS
Create a response surface experiment using Analysis Design of Experiments Response
Surface Designs:
 Select the type of design in Design Type.
 Specify a column for the response in Simulated Response Variable (e.g. c1 or Y).
 Specify a column for blocks in Block Variable (e.g. c2 or Blocks).
 Specify the column for the first design variable in First Factor Variable (e.g. c3 or A).
 Specify the factor levels in Factor Values. The values 1 and 1 are recommended and 0 is

assumed for the center level. Specify a set of levels for as many variables as are required for
the design.

 Replicate the design manually with copy/paste operations and define each replicate as a new
block.

Analyze the experiment using Analysis Design of Experiments Analysis of Response Surface
Designs or Analysis Regression/Correlation Multiple Regression (2001 Edition). See the
notes from Chapter 9 for details for configuring these analyses.

Putting It All Together
The following algorithm assumes that you’re starting with a process that you have little to no
experience with. If you do have some knowledge of the system, you may be able to start from a later
step.
1. Follow the 11-step DOE process.
2. Use a fractional factorial or Plackett-Burman design to identify the vital few variables from

the many variables.Run the fold-over design to identify significant two-factor interactions.
3. Run a 2k or 2k1 with centers design to quantify main effects, two factor interactions, and to

test for curvature in the response space.
4. Run a response surface design, e.g. BBk or CC2kp , to quantify main effects, two factor

interactions, and quadratic terms. Build the experiment in blocks if possible so that you can
suspend the experiment if all of the answers are apparent early.

5. Build a confirmation experiment to test the results from new runs to the model prediction.
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Strategies for Missing Runs and Outliers
 Missing runs from an otherwise good experiment design cause undesireable correlations

between predictors.
 Outliers are unusual observations, hopefully with an obvious special cause, that deviate

substantially from their predicted values.
 Outliers should never be removed without cause. When there is sufficient cause, an outlier

should be replaced with a new observation or can be treated like a missing value.
 Determine if the missing runs and outliers are missing with cause (MWC) or missing at

random (MAR).
 If observations are missing with cause, search the cause out and take appropriate action. For

example, if observations are missing because one level of a design variable was chosen
poorly, remove all of the observations made at that level and analyze what’s left.

 If the observations are missing at random, then the analysis can be corrected to account for
them using the imputation procedure below.

 If possible, for observations missing at random, build replacement runs to fill in the missing
values. Consider building some of the runs that survived (center point runs are a good choice)
with those to confirm that the process hasn’t shifted between the original and replacement
runs.

 If the design is replicated, df is very large, and the number of missing values is relatively
small compared to df, replace the missing observations with the average of their cell means
and complete the regular analysis.

 To impute observations missing at random, treat the missing values as predictors in the
model by simultaneous solution of the least square system of equations:


y i

 i2  0

or, find the optimal y i values by:
1. Replace the missing values with best guesses, such as the grand or cell means
2. Fit the desired model and store the predicted values
3. Replace the initial guesses with predicted values
4. Repeat steps 2 and 3 until the predicted values converge (note: convergence

corresponds to i  0).
5. If the number of missing values is substantial compared to the ANOVA’s df, reduce

df by the number of missing observations and recalculate the ANOVA table and
regression coefficient standard errors, t values, and p values.

 Always be absolutely clear about how you handled the missing values in reporting any results.
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